
Mitrović et al. 
The Journal of Headache and Pain          (2023) 24:169  
https://doi.org/10.1186/s10194-023-01704-z

RESEARCH

Machine learning approach for Migraine 
Aura Complexity Score prediction based 
on magnetic resonance imaging data
Katarina Mitrović1*, Andrej M. Savić2, Aleksandra Radojičić3,4, Marko Daković5 and Igor Petrušić5 

Abstract 

Background  Previous studies have developed the Migraine Aura Complexity Score (MACS) system. MACS shows 
great potential in studying the complexity of migraine with aura (MwA) pathophysiology especially when imple-
mented in neuroimaging studies. The use of sophisticated machine learning (ML) algorithms, together with deep pro-
filing of MwA, could bring new knowledge in this field. We aimed to test several ML algorithms to study the potential 
of structural cortical features for predicting the MACS and therefore gain a better insight into MwA pathophysiology.

Methods  The data set used in this research consists of 340 MRI features collected from 40 MwA patients. Average 
MACS score was obtained for each subject. Feature selection for ML models was performed using several approaches, 
including a correlation test and a wrapper feature selection methodology. Regression was performed with the Sup-
port Vector Machine (SVM), Linear Regression, and Radial Basis Function network.

Results  SVM achieved a 0.89 coefficient of determination score with a wrapper feature selection. The results sug-
gest a set of cortical features, located mostly in the parietal and temporal lobes, that show changes in MwA patients 
depending on aura complexity.

Conclusions  The SVM algorithm demonstrated the best potential in average MACS prediction when using a wrapper 
feature selection methodology. The proposed method achieved promising results in determining MwA complexity, 
which can provide a basis for future MwA studies and the development of MwA diagnosis and treatment.

Keywords  Artificial intelligence, Support vector machine, Machine learning, Magnetic resonance imaging, Migraine 
with Aura, Prediction, regression

Background
Migraine with aura (MwA) is a type of migraine that can 
be manifested very heterogeneously [1]. It is character-
ized by the aura phase, defined as the complex of fully 
reversible neurological symptoms, such as visual, soma-
tosensory, speech, motor, brainstem, and/or retinal, that 
can precede or follow the headache phase [2]. The most 
common subtype of MwA is migraine with a typical aura, 
which is present in almost one-third of patients who suf-
fer from migraine [3].

MwA is also characterized by an intra-variability in 
symptoms that are manifested in different attacks of the 
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same patient [4, 5]. The variability of symptoms during an 
attack is most often related to the duration, quality, and 
degree of involvement of aura symptoms [6]. To stratify 
MwA patients and investigate the correlation between 
MwA complexity and changes in the cortex structure, 
a system for assessment of the quality and quantity of 
MwA attack symptoms in individual patients was intro-
duced [7]. This system for quantifying MwA complexity 
is based on measuring Migraine Aura Complexity Score 
(MACS) [7, 8]. MACS reflects the presence and quality 
of visual, somatosensory, dysphasic, and other higher 
cortical symptoms, and it is developed to assess the aura 
complexity and stratification of MwA subtypes, which 
can significantly improve the investigation of MwA 
pathophysiology and point to new targets and solutions 
for individual and precision medicine treatment of MwA 
patients [7]. MACS is measured for each attack individu-
ally and provides insight into attack complexity. By aver-
aging multiple scores in one patient, a quantitative value 
of average MwA complexity for a selected patient can be 
obtained.

Magnetic resonance imaging (MRI) data was previ-
ously used in a limited number of studies to explore the 
connection between MwA complexity and changes in 
the cortex [6–13]. MwA is commonly categorized into 
simple MwA (MwA-visual) and complex MwA (MwA-
visual plus) based on the occurring symptoms, where 
MwA-visual includes visual symptoms only, whereas 
the presence of somatosensory and/or dysphasic symp-
toms in addition to the visual ones indicates MwA-visual 
plus [6, 9, 10, 12–14]. In the MwA-visual plus group of 
patients, it has been shown that there is a significantly 
reduced surface area and volume of the left rostral mid-
dle frontal cortex, as well as increased left temporal pole 
sulcal depth in comparison to MwA-visual, which rein-
forces the statement that structural measures of cortical 
regions can be used as potential biomarkers of MwA sub-
types of different complexity [6]. Other results argue that 
MwA-visual and MwA-visual plus can be distinguished 
based on their cortical thickness, surface area, volume, 
mean Gaussian curvature, and folding index of particu-
lar regions and suggest further research [13]. Moreover, 
a recent study revealed that MwA is associated with thin-
ning in various cortical regions, and the clinical diversity 
of aura symptoms is mirrored by contrasting thickness 
alterations in regions responsible for high-level visual 
processing, sensorimotor function, and language pro-
cessing [12]. Furthermore, the previous studies which 
investigated differences between MwA patients who have 
MwA-visual and those who have MwA-visual plus symp-
toms using functional MRI found significant alterations 
in multiple brain regions such as the visual cortex, lingual 
gyrus, anterior insula, and sensorimotor cortex [9–11], 

but did not perform further investigation using structural 
MRI.

Previous reports show evidence of a relation between 
MACS and the structural MRI data [7, 8]. More spe-
cifically, a thicker left primary visual cortex in the 
MwA groups with higher MACS was found, as well as a 
thicker cortex in several visual and somatosensory cor-
tical regions of patients with high MACS relative to the 
patients with low MACS values [8]. Furthermore, the 
MACS demonstrated a positive correlation with the 
cortical thickness of multiple brain regions, where the 
left and right lateral occipital, right cuneus, right precu-
neus, left postcentral, and left and right superior parietal 
cortices showed the greatest significance [7]. This work 
extends this investigation with focusing on the average 
MACS score and studying its correlation with the com-
prehensive set of cortical features derived from structural 
MRI data.

The main goal of this study is to test the feasibility of 
predicting the average MACS from the structural MRI 
data using advanced ML algorithms and feature selection 
methods. Moreover, this study aims to offer scientific 
directions of the exploration of novel machine learning 
(ML) approaches, combined with comprehensive struc-
tural MRI data of the cerebral cortex, for investigating 
MwA complexity.

Methods
Participants
MwA patients included in the study were from the cohort 
of patients who were enrolled in a previous migraine neu-
roimaging study [13]. Diagnosis of episodic migraine with 
typical aura was established based on the third edition 
of the International Classification of Headache Disor-
ders (ICHD-3) criteria [2]. This research was conducted 
in accordance with the ethical standards of the institu-
tional and/or national research committee and with the 
1964 Declaration of Helsinki and its later amendments or 
comparable ethical standards. In addition, all procedures 
related to the data set preparation were approved by the 
Review Board of the Neurology Clinic.

MwA patients had to meet the following criteria to be 
included in the study: 1) written consent of participation 
in the study, 2) 21-55 years of age, 3) episodic migraine 
with typical aura present for five years or more, 4) two or 
more MwA attacks per year, 5) have never used migraine 
preventive therapy, and 6) right-hand side of body 
predominance (to avoid possible differences in brain 
regions).

In case the presence of other headache types, neurolog-
ical, cardiovascular, or metabolic disorders were identi-
fied in medical history or during a physical examination, 
the participant was excluded from the study. Occasional 



Page 3 of 12Mitrović et al. The Journal of Headache and Pain          (2023) 24:169 	

migraine without aura or tension headaches were 
allowed. Claustrophobia or incapacity to undergo an MRI 
examination implied an inability to participate in this 
study. Subjects with structural abnormalities recorded 
on MRI were also withdrawn from the study. Also, MwA 
patients were scanned during the interictal stage of the 
migraine cycle.

In addition to MRI data, the average MACS values for 
each participant were acquired. MACS score is deter-
mined based on the questionnaire that is fulfilled after 
every MwA attack [7, 8]. The questionnaire consists of 
questions related to the symptoms that the patient may 
have experienced during the MwA attack. In particular, 
patients who had experienced visual disturbances also 
reported the level of involvement of the visual field, while 
patients who had experienced somatosensory symp-
toms also reported the number of body regions that were 
involved. Also, patients have reported if they experi-
enced some kind of higher cortical dysfunctions, includ-
ing higher cortical disturbances of visual (micropsia, 
macropsia, dysmorphia, fractured vision, and prosopag-
nosia) and somatosensory symptoms (astereognosis, dys-
praxia, and unawareness of one’s own body parts), as well 
as dysphasic and memory disturbances. More detailed 
information about the questionnaire can be found else-
where [7, 8]. Additionally, to create a more precise aver-
age score, the average MACS of a minimum of 6 MwA 
attacks was calculated and used as a final score. The 
range of the average MACS can be from 0 to 9, where a 0 
value indicates the presence of MwA with mild forms of 
aura and higher values of MACS indicate a more complex 
aura.

MRI data acquisition and post‑processing
The MRI examination was performed on a 3 T Scanner 
(MAGNETOM Skyra, Siemens, Erlangen, Germany). 
Protocol for MRI examination was: 1) 3D T1 (repeti-
tion time (TR) = 2300 ms, echo time (TE) = 2.98 ms, flip 
angle (FA) = 9 ◦ , 130 slices with voxel size 1 × 1 × 1 mm3 , 
acquisition matrix 512 × 512, field of view (FOV) = 256 
× 256 mm2 ), 2) 3D FLAIR (TR = 5000 ms, TE = 398 ms, 
inversion time = 1800 ms, FA = 120◦ , acquisition matrix 
256 × 256, FOV = 256 × 256 mm2 ), and 3) T2 weighted 
spin echo (T2W) in an axial plane (TR= 4800 ms, TE = 
92 ms, FA = 90◦ , acquisition matrix 384 × 265, FOV= 256 
× 256 mm2 , slice thickness = 5 mm). T2W images were 
only used to exclude the presence of brain lesions.

Freesurfer (v 6.0) analysis was performed on an HP 
DL850 server (Intel Xeon 3.2 MHz, eight cores, 16 
GB RAM) using a recon-all script, combining 3D T1 
and FLAIR images, for automatic cortical reconstruc-
tion and segmentation of brain structures. The average 

run time (with the parallelization option used) was six 
hours. Details about Freesurfer and its routines can be 
found in other studies [15]. Cortical parcellation was 
done according to the Desikan-Killiany Atlas [16].

Based on MRI images, data were obtained for the 
left and right hemispheres of the brain. For each hemi-
sphere, data was collected for 34 regions of the cortex, 
namely: banks of the superior temporal sulcus, cau-
dal anterior cingulate, caudal middle frontal, cuneus, 
entorhinal, fusiform, inferior parietal, inferior tempo-
ral, isthmus cingulate, lateral occipital, lateral orbito-
frontal, lingual, medial orbitofrontal, middle temporal, 
parahippocampal, paracentral, pars opercularis, pars 
orbitalis, pars triangularis, pericalcarine, postcentral, 
posterior cingulate, precentral, precuneus, rostral ante-
rior cingulate, rostral middle frontal, superior frontal, 
superior parietal, superior temporal, supramarginal, 
frontal pole, temporal pole, transverse temporal, and 
insula region. For each region, thickness, surface area, 
volume, mean Gaussian curvature and folding index 
were measured. The data set consists of 340 input fea-
tures of numerical data type. The dimension of the 
dataset can be represented as follows:

where h represents brain hemispheres, r represents 34 
regions, and m refers to 5 observed measures.

Statistical analysis
The sample size was based on the available data and 
previous literature [7, 13]. Furthermore, according 
to the recommendation for clinical research [17], the 
total sample size required to determine whether a cor-
relation coefficient differs from zero is 29 participants, 
when α (two-tailed) is set to 0.05, β (type II error rate) 
is set to 0.2 and the expected correlation coefficient is 
set to 0.5. Accordingly, 40 MwA patients were included 
in this study. Based on the assumption that the com-
plexity of MwA is associated with changes in some 
regions of the cortex, a correlation analysis between 
each feature from the data set and the average MACS 
was performed. The correlation was performed 340 
times for each input feature individually, where the 
first variable was a feature from the input set, and the 
second variable was the average MACS. Given that the 
average MACS variable is not normally distributed, and 
it participates in measuring all correlation coefficients, 
the assumption of bivariate normality cannot be justi-
fied. Therefore, this statistical analysis was carried out 
using Spearman’s rank correlation coefficient [18, 19]. 
The threshold for statistical significance (p-value) was 
0.05.

(1)h× r ×m = 2× 34 × 5 = 340
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Machine learning
The feature selection and ML model training were per-
formed in the Waikato Environment for Knowledge 
Analysis (Weka) software.

The majority of ML algorithms operate based on the 
assumption that there are more samples than predic-
tors in the data set. In cases where the number of inputs 
exceeds the number of samples, the problem of dimen-
sionality of the data set may occur. This can result in a 
high variance and overfitting, which can distort the 
prediction results [20]. The data set for ML algorithm 
training in this study includes 40 samples and 340 input 
features ( p = 340 , N = 40 ), which indicates a dimen-
sionality problem. Therefore, before training the regres-
sion ML algorithm, the feature selection should be 
performed, thereby reducing the dimensionality of the 
data set.

In this study, two approaches were used for feature 
selection: a correlation-based selection and a wrapper 
method-based selection. The first method is based on 
the Fast correlation-based filter solution which implies 
calculating the correlation between continuous variables 
and output, deriving a statistically significant subset of 
features, and then removing redundant features based 
on feature-feature correlation [21]. The feature subsets 
derived with Spearman’s rank statistical analysis when 
p < 0.05 , as well as when p < 0.01 , are used for the cor-
relation-based approach. After calculating the correlation 
coefficient between features, the pairs of features that 
correlated with a coefficient greater than or equal to 0.85 
were determined. The redundant features are eliminated 
based on their correlation with MACS, where the feature 
correlating with MACS at a lower significance level was 
retained in each pair. The features remaining after the 
process of elimination were used as input for ML algo-
rithm training.

The second method for feature selection used the 
wrapper method which performs an extensive search of 
the feature space and returns a subset of features that 
achieves the best results using a learning scheme [22]. 
The estimation of the correlation coefficient is deter-
mined using 5-fold cross-validation. The search method 
used for this feature selection is the best first algorithm. 
It performs a forward search of the space of feature sub-
sets where the starting point includes the empty set of 
features.

The ML models implemented for prediction of aver-
age MACS are the Support Vector Machine (SVM) algo-
rithm for regression or Support Vector Regression (SVR), 
Linear Regression (LR), and Radial Basis Function (RBF) 
network.

The basic idea of SVR is finding a function that has a low 
deviation from the output values while maintaining the 

shape as flat as possible to preserve the generalization abil-
ity [23]. SVR model can be written as:

where x represents the input data, i is the data index (i∈
1,...,N), α is Lagrange multiplier, b is the bias, and 〈xi, x〉 is 
the dot product of its elements [23]. The optimal solution 
of SVR has to satisfy Karush-Kuhn-Tucker conditions:

as well as conditions:

where y is the output data, w is a vector normal to the 
hyperplane, ε is a threshold to which the deviations are 
tolerated, C is the complexity parameter that determines 
the trade-off between the flatness of the model and the 
error tolerance, and ξ and ξ∗ are slack variables that make 
the optimization problem feasible [23].

For solving regression problems with SVM, an iterative 
model called Sequential Minimal Optimization (SMO) is 
used. This research employs a modified SMO algorithm 
where two threshold parameters are being maintained [24]:

The following formulas represent F̃i and F̄i:

Index sets for α are defined as follows:

(2)f (x) =

N

i=1

αi − α∗
i �xi, x� + b

(3)αi(ε + ξi − yi + �w, xi� + b) = 0

(4)α∗
i (ε + ξ∗i + yi − �w, xi� − b) = 0

(5)(C − αi)ξi = 0

(6)
(

C − α∗
i

)

ξ∗i = 0

(7)F̃ilow = blow = max{ F̃i : i ∈ I0 ∪ I1 ∪ I2}

(8)F̄iup = bup = min{ F̄i : i ∈ I0 ∪ I1 ∪ I3}

(9)F̃i =

{

yi − �w, xi� + ǫ : i ∈ I0b ∪ I2
yi − �w, xi� − ǫ : i ∈ I0a ∪ I1

(10)F̄i =

{

yi − �w, xi� + ǫ : i ∈ I0b ∪ I1
yi − �w, xi� − ǫ : i ∈ I0a ∪ I3

(11)I0a = {i : 0 < αi < C}

(12)I0b =
{

i : 0 < α∗
i < C

}

(13)I1 =
{

i : αi = 0, α∗
i = 0

}
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The following condition is used for optimality checking:

where τ is a positive tolerance parameter [24].
The kernel function used with SVM in this research is 

linear kernel, which can be mathematically represented 
as follows [25]:

where xi and xj are the samples of data. The complexity 
parameter C was set to 1, whereas the epsilon parameter 
of the epsilon insensitive loss function and the tolerance 
were equal to 0.001. Before applying the algorithm, the 
normalization of data was performed.

The basic LR can be mathematically represented as 
follows:

where Y is the output vector, X is the input matrix, β is 
the unknown parameter vector, and ε is the vector of 
errors [26]. The model selection is based on the M5 
model tree and Akaike information criterion. In each 
iteration, the feature with the lowest standardized coef-
ficient is eliminated until a stagnation in the decrease of 
the estimated error is noted.

RBF network is a three-layer feed-forward neural net-
work that uses Gaussian RBF as an activation function 
and it can be computed as follows:

where c is the center and σ 2 is the variance [27]. The 
center is a fixed point that represents the central point 
of each node, whose initial value is determined using the 
k-means clustering algorithm. The output calculation is 
based on the Euclidean distance between the data point 
and a set of centers. The output calculation is based on 
the activation functions of hidden units (18) and the 
function weights:

The penalized squared error is minimized using the 
quasi-Newton method based on the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) updates. The ridge hyperpa-
rameter of the error function that indicates the weight 
penalty and controls overfitting is set to 0.01. Another 

(14)I2 =
{

i : αi = 0, α∗
i = C

}

(15)I3 =
{

i : αi = C , α∗
i = 0

}

(16)blow ≤ bup + 2τ

(17)K (xi, xj) = xixj

(18)Y = Xβ + ε

(19)h(x) = e
−

�x−c�2

σ2

(20)f (x) =

N
∑

i=1

wihi(x)

hyperparameter of this algorithm is the number of RBFs, 
which was set to 4. Before applying the algorithm, the 
normalization of data was performed.

The quality metrics used to determine the success 
of the prediction are coefficient of determination or R2 
score (R2), mean absolute error (MAE), and root mean 
squared error (RMSE). R2 is based on calculating the 
sum of squares of the residual errors and the total sum of 
the errors:

where n is the sample size, y is the real output value, ŷ is 
the predicted value, and ȳ is the mean value of y [28]. The 
value of R2 ranges between 0 and 1 where higher values 
indicate better performance of the model. MAE can be 
defined as follows:

whereas RMSE is defined as:

where n is the sample size, y is the real output value, and 
ŷ is the predicted value [29].

The quality of the prediction was evaluated using the 
10-fold cross-validation method.

Results
This study included data from 40 MwA patients. The 
main demographic data and aura features of participants 
including gender, age, average MACS score, duration of 
the aura, and attack frequency are presented in Table 1.

The initial data set in this study contained 340 input 
features obtained by MRI scanning, including thickness, 
surface area, volume, mean Gaussian curvature, and fold-
ing index of cortical regions of both brain hemispheres. 

(21)R2 = 1−

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2

(22)MAE =
1

n

n
∑

i=1

|yi − ŷi|

(23)RMSE =

√

√

√

√

1

n

n
∑

i=1

(

yi − ŷi
)2

Table 1  Characteristics of participants

a  MwA migraine with aura, b SD standard deviation, c MACS migraine aura 
complexity score

Variable MwA a (n = 40)

Female, number of participants (%) 27 (67.50 %)

Age, mean ± SD b (range) 36.20 ± 8.90 (20.00 - 55.00)

MACS c, mean ± SD (range) 2.86 ± 2.40 (0.00 - 7.50)

Aura duration (minutes), mean ± SD (range) 36.25 ± 17.05 (10.00 - 90.00)

Attack frequency per year, mean ± SD 
(range)

6.20 ± 6.75 (1.00 - 30.00)
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The feature-MACS correlation established 26 features 
with a significant relationship with the average MACS 
( p < 0.05 ). These features, as well as their correlations to 
the average MACS and p-values, are shown in Table 2.

Further, a correlation analysis that determined correla-
tion coefficients between these features was conducted, 
where four pairs of highly correlated features were 
detected (Fig.  1). Within each pair, the feature correlat-
ing with MACS at a lower significance level was retained. 
The eliminated features are left and right lingual volume, 
left caudal middle frontal gray volume, and right caudal 
middle frontal folding index.

The final data set which was used for ML model 
training when correlation-based feature selection was 
performed contained 22 features. The SVM regres-
sor outperformed other algorithms with the following 
results: R2 = 0.47, MAE = 1.449, and RMSE = 1.8309. 
Figure 2 shows the difference between the real and pre-
dicted average MACS scores using this model.

The subset of data that included 6 features that were 
the result of correlation analysis with a significance level 
of 0.01 was also evaluated for the prediction of average 

MACS. Although the SVM regressor exceeded other 
algorithms, the results showed a notable decline: R2 = 
0.38, MAE = 1.5618, and RMSE = 1.9147. Figure 3 shows 
the difference between the real and predicted average 
MACS scores using this model.

The wrapper method for feature selection was applied 
to help reveal less obvious subsets of features that 
undergo changes with the increased complexity of MwA 
and thus collectively contribute to better prediction of 
average MACS scores. The data subset derived using 
wrapper feature selection contained the following 18 
input features:

•	 Left caudal middle frontal surface area;
•	 Left inferior parietal volume;
•	 Left inferior temporal thickness;
•	 Left isthmus cingulate volume;
•	 Left lingual surface area;
•	 Left parahippocampal mean Gaussian curvature;
•	 Left pericalcarine mean Gaussian curvature;
•	 Left postcentral surface area;
•	 Left transverse temporal thickness;

Table 2  Features with significant correlation with average MACS

Feature Correlation p-value

Left parahippocampal gyrus mean Gaussian curvature -0.4763 0.0019

Left transverse temporal gyrus mean Gaussian curvature 0.4748 0.0020

Left transverse temporal gyrus thickness 0.4693 0.0023

Left pars opercularis thickness 0.4674 0.0024

Left lingual gyrus surface area -0.4191 0.0071

Right transverse temporal gyrus mean Gaussian curvature 0.4072 0.0091

Left caudal middle frontal gyrus surface area -0.3964 0.0113

Left entorhinal gyrus volume -0.3737 0.0175

Right entorhinal gyrus volume -0.3736 0.0176

Right lingual gyrus surface area -0.3711 0.0184

Left precuneus gyrus surface area -0.3572 0.0237

Left pars opercularis surface area -0.3545 0.0248

Right caudal middle frontal gyrus surface area -0.3510 0.0264

Right transverse temporal gyrus thickness 0.3480 0.0278

Left caudal middle frontal gyrus volume -0.3461 0.0287

Left isthmus cingulate surface area -0.3367 0.0336

Left pericalcarine thickness 0.3286 0.0384

Left caudal anterior cingulate mean Gaussian curvature 0.3284 0.0386

Right entorhinal gyrus surface area -0.3276 0.0391

Right pericalcarine mean Gaussian curvature -0.3214 0.0431

Left medial orbitofrontal gyrus folding index -0.3208 0.0436

Left pars triangularis thickness 0.3186 0.0451

Right caudal middle frontal gyrus folding index -0.3175 0.0459

Right paracentral gyrus mean Gaussian curvature 0.3167 0.0465

Left lingual gyrus volume -0.3159 0.0470

Right lingual gyrus volume -0.3141 0.0484
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•	 Left transverse temporal mean Gaussian curvature;
•	 Right fusiform surface area;
•	 Right isthmus cingulate folding index;
•	 Right medial orbitofrontal thickness;
•	 Right middle temporal folding index;
•	 Right parahippocampal folding index;
•	 Right pars orbitalis folding index;
•	 Right postcentral surface area;
•	 Right postcentral volume.

This selection of features provided a subset that showed 
great potential in the prediction of average MACS. 
Table  3 shows SVM, LR, and RBF network results. 
The model training was carried out using 10-fold 
cross-validation.

RBF neural network achieved R2 = 0.7309, MAE = 
0.9586, and RMSE = 1.2321. LR algorithm performed 
normalization and iterative selection of data. This model 
for average MACS prediction achieved R2 = 0.8046, 

MAE = 0.871, and RMSE = 1.0827. SVM results include 
R2 = 0.89, MAE = 0.5229, and RMSE = 0.7971, which 
notably outperformed other models. Figure  4 presents 
the predicted vs. real MACS values using wrapper feature 
selection and SVM regression.

Discussion
The focus of this study is to find brain regions that show 
alterations with different aura complexity. Statistical 
analysis and ML techniques were implemented to iden-
tify these regions with the goal of finding markers to 
aid the diagnosis of MwA and the level of its complex-
ity. Correlation analysis of the input features and average 
MACS was conducted, resulting in a subset of features 
that show significant alterations with different average 
MACS scores. Further, this study aimed to explore the 
potential of ML algorithms in the average MACS score 
prediction to provide a direction for future research in 
this domain. Different feature selection methods were 

Fig. 1  Correlation analysis of features that significantly correlate with MACS (p < 0.05). The correlation-based feature selection includes 
the elimination of features that have a correlation greater than ±0.85. Correlation values range from -1 to 1 as shown in the heatmap color 
spectrum. The purple color symbolises a negative correlation, the middle shades indicate a low correlation, whereas the orange section indicates 
a positive correlation. The color intensity shows the correlation strength. (1 - Left parahippocampal gyrus mean Gaussian curvature; 2 - Left 
transverse temporal gyrus mean Gaussian curvature; 3 - Left transverse temporal gyrus thickness; 4 - Left pars opercularis thickness; 5 - Left 
lingual gyrus surface area; 6 - Right transverse temporal gyrus mean Gaussian curvature; 7 - Left caudal middle frontal gyrus surface area; 8 - Left 
entorhinal gyrus volume; 9 - Right entorhinal gyrus volume; 10 - Right lingual gyrus surface area; 11 - Left precuneus gyrus surface area; 12 - Left 
pars opercularis surface area; 13 - Right caudal middle frontal gyrus surface area; 14 - Right transverse temporal gyrus thickness; 15 - Left caudal 
middle frontal gyrus volume; 16 - Left isthmus cingulate surface area; 17 - Left pericalcarine thickness; 18 - Left caudal anterior cingulate mean 
Gaussian curvature; 19 - Right entorhinal gyrus surface area; 20 - Right pericalcarine mean Gaussian curvature; 21 - Left medial orbitofrontal gyrus 
folding index; 22 - Left pars triangularis thickness; 23 - Right caudal middle frontal gyrus folding index; 24 - Right paracentral gyrus mean Gaussian 
curvature; 25 - Left lingual gyrus volume; 26 - Right lingual gyrus volume)
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Fig. 2  Predicted vs. real average MACS for SVM algorithm and correlation-based feature selection (p < 0.05). The x-axis shows predicted average 
MACS and the y-axis real average MACS scores. The prediction is performed using the SVM algorithm and features that correlate with average MACS 
with a 0.05 significance level. Each black dot represents one subject. This model achieved R2 = 0.47, MAE = 1.449, and RMSE = 1.8309

Fig. 3  Predicted vs. real average MACS for SVM algorithm and correlation-based feature selection (p < 0.01). The x-axis shows predicted average 
MACS and the y-axis real average MACS scores. The prediction is performed using the SVM algorithm and features that correlate with average MACS 
with a 0.01 significance level. Each black dot represents one subject. This model achieved R2 = 0.38, MAE = 1.5618, and RMSE = 1.9147
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tested and the derived data subsets were used as a basis 
for implementation of the ML algorithms which led to 
identifying important predictors of the MwA complexity 
in patients.

Several studies have been devoted to finding reli-
able markers to identify the presence of MwA and the 
approaches and results are varied [6–8, 10–13]. This 
paper represents efforts to strengthen and expand the 
results in this area. The dataset used in this research 
included 340 cortical features, which were the input for 
the statistical analysis along with the average MACS 
score. This study extends previous research based 
on MACS values. This score is a relatively new con-
cept whose potential is being explored and additional 
research is needed in this area. Correlation analysis 

between features and average MACS score identified 26 
significant features that strongly correlated with aver-
age MACS ( p < 0.05 ). Most prominent features include 
parahippocampal mean Gaussian curvature, transverse 
temporal mean Gaussian curvature, transverse tempo-
ral thickness, pars opercularis thickness, and lingual 
surface area of the left hemisphere, and transverse tem-
poral mean Gaussian curvature of the right hemisphere 
( p < 0.01 ). Changes in the structure and function of 
the parahippocampal gyrus were observed in people 
with migraine in earlier studies [30, 31], and our results 
indicate that the morphology of this brain region plays 
a significant role in the manifestation of the migraine 
aura and its degree of complexity. Furthermore, our 
results pointed transverse temporal gyrus as a pre-
dominant cortical structure in these findings, therefore 
its role should be further explored in aura complexity 
prediction. Other studies found significant changes in 
transverse temporal gyrus in migraine patients when 
compared to healthy controls (HCs), as well as across 
age groups of migraine patients [32, 33], but its role in 
the aura complexity remains unclear. Also, our findings 
identify left pars opercularis thickness as one of the 
most prominent markers for MACS complexity predic-
tion, which is in agreement with the results of another 
study where this marker is recognized as important 
for MwA classification using the Linear Discriminant 

Table 3  The results of machine learning algorithms with 
wrapper feature selection

a  R2 coefficient of determination, b MAE mean absolute error, c RMSE root mean 
squared error, d SVM support vector machine, e LR linear regression, f RBF radial 
basis function

Algorithm R2 a MAE b RMSE c

SVM d 0.8934 0.5229 0.7971

LR e 0.8046 0.8710 1.0827

RBF f network 0.7309 0.9586 1.2321

Fig. 4  Predicted vs. real average MACS for SVM algorithm and wrapper feature selection subset. The x-axis shows predicted average MACS 
and the y-axis real average MACS scores. The prediction is performed using the SVM algorithm and features that were derived with the wrapper 
feature selection method. Each black dot represents one subject. This model achieved R2 = 0.8046, MAE = 0.871, and RMSE = 1.0827
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Analysis (LDA) algorithm with a high rate of accuracy 
[13]. Further, left and right lingual gyrus surface area 
and volume are found to be significantly correlated with 
average MACS, and several other studies also found 
significant changes in the left and right lingual gyrus in 
MwA patients [10–12]. These findings might indicate 
that a part of the cortex centralized in the lingual gyrus 
is involved in the initiation and/or propagation of MwA 
[11]. Our results confirm the hypothesis that MwA 
patients exhibit alterations in visual pathways [10, 11], 
although these studies are based on resting-state func-
tional MRI which allows the exploration of whole-brain 
functional connectivity.

With the progress of artificial intelligence, primarily 
ML models, and their extensive application, the number 
of works on the topic of migraine subtype prediction is 
increasing. Several studies that use ML models to clas-
sify different migraine patients have been conducted [13, 
34, 35]. A study that used MRI data of cortical thickness, 
surface area, and volume performed a set of migraine 
classification tasks with a high success rate: migraine vs. 
HCs (68% accuracy), episodic migraine vs. HCs (67% 
accuracy), chronic migraine vs. HCs (86% accuracy), and 
chronic vs. episodic migraine (84% accuracy) [34]. LDA 
algorithm based on post-processed MRI data obtained 
97% classification accuracy of MwA patients vs. HCs 
and 98% accuracy between MwA-visual and MwA-visual 
plus [13]. Another study developed a model based on the 
classification methods, feature-selection techniques, and 
statistical analyses on functional connectivity measures 
extracted from electroencephalography (EEG) signal to 
differentiate between MwA and migraine without aura, 
which achieved 84.62% accuracy [35]. The prediction of 
migraine and its subtypes is carried out by applying dif-
ferent ML algorithms and using different types of input 
data such as functional MRI, structural MRI, EEG, and 
more, which can be a significant aid in the diagnosis and 
treatment of this disease. This study combines statistical 
analysis, ML, and previous knowledge about the MACS 
score to find predictors of migraine complexity. As the 
MACS is a relatively new concept, its potential is still 
being explored in current research.

This study was initiated from the assumption that by 
extracting individual attributes that significantly corre-
late with the average MACS score, a set of data that will 
contribute to the prediction of this score can be obtained. 
However, the research showed that the individual 
approach had significantly lower performance than using 
a wrapper method that discovered a combination of fea-
tures that can perform a good prediction. This strength-
ens previous suggestions that MwA might be a neural 
network disease that causes multiple structural changes 
in the cerebral cortex [13].

In this paper, multiple ML algorithms were applied to 
several different inputs derived as a result of different 
feature selection methods. The most prominent algo-
rithms are SVM, LR, and RBF neural network. For each 
algorithm, a comprehensive search was performed in 
the hyperparameter space to find those values that con-
tribute the most to a good prediction. The two data sets 
are established using correlation-based feature selection 
where features that correlated with MACS with 0.05 and 
0.01 level of significance were taken as input sets. In addi-
tion, an extensive wrapper feature selection was imple-
mented and resulted in the discovery of a set of features 
that combined provide promising results in the area of 
aura complexity prediction. The SVM model for regres-
sion achieved a high R2 score and low error values and 
demonstrated the ability to predict the average MACS 
score based on these cortical markers.

In other recent studies, the SVM model showed prom-
ising results in migraine prediction [36–38]. One study 
investigated the ability of an SVM model to differenti-
ate migraine patients from HCs and identified the most 
predictive brain regions [36]. Multi-kernel SVM achieved 
83.67% accuracy when classifying migraine patients with-
out aura and controls based on functional and structural 
MRI data. Similarly, our study is deploying a feature 
selection and SVM algorithm, although we focus on 
MwA complexity and related markers. Another finding 
demonstrates the potential of SVM as a diagnostic tool 
for migraine without aura with almost 82% accuracy 
when applied to functional MRI data [37]. Multiple state-
of-the-art ML algorithms including SVM were also used 
to classify migraine patients and HCs, along with fea-
ture selection and dimensionality reduction algorithms 
to build an optimal feature set by removing redundant 
features [38]. Another common task that yielded the 
implementation of the ML approach dealt with the clas-
sification of MwA vs. migraine without aura [10, 35]. 
To the best of our knowledge, this is the first study that 
focused on MwA complexity prediction based on MACS 
scores and MRI data of the cerebral cortex.

The main limitation of this research lies in the number 
of participants. A study that includes data from a greater 
number of subjects would be crucial for confirming our 
findings. In addition, it can be noted that most of the 
previous works are based on research on one modality of 
data. However, we used multidimensional structural MRI 
data and advanced ML algorithms to improve knowledge 
about connections between the level of aura complexity 
and cortical features. Conducting research on different 
modalities and their combinations (functional MRI, dif-
fusion MRI, structural MRI) can yield significant results 
and new knowledge in this field. Further, investigation of 
an interplay between the symptoms of headache, MACS, 
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and cortical features is needed in future studies to gain 
new insights in this field.

Conclusions
The ML model based on the SVM algorithm showed 
potential in predicting average MACS scores using 
structural MRI data. Also, our findings show that the 
utilization of advanced ML algorithms can significantly 
outperform traditional statistical correlation methods 
for the prediction of the average MACS using structural 
MRI data of the cerebral cortex. In addition, the findings 
of this study suggest that the combination of cortical fea-
tures that are most correlated with the average MACS 
does not necessarily serve as a good model for prediction, 
whereas cortical features derived from advanced ML 
algorithms yield promising results. Altogether, given that 
increasing MACS implies more abundant symptomatol-
ogy during the aura phase it does not come as a surprise 
that advanced ML algorithms pointed to various cortical 
features spread out throughout a whole brain network 
affecting predominately parietal and temporal regions. 
The results of this paper can provide a basis for future 
MwA studies and the development of evidence-based 
diagnosis of MwA subtypes and their treatment.

Abbreviations
MwA	� Migraine with aura
MACS	� Migraine Aura Complexity Score
MRI	� Magnetic resonance imaging
MwA-visual	� Simple migraine with aura
MwA-visual plus	� Complex migraine with aura
ML	� Machine learning
ICHD-3	� International Classification of Headache Disorders, 3rd 

edition
TR	� Repetition time
TE	� Echo time
FA	� Flip angle
FOV	� Field of view
T2W	� T2 wighted spin echo
Weka	� Waikato Environment for Knowledge Analysis
SVM	� Support Vector Machine
SVR	� Support Vector Regression
LR	� Linear Regression
RBF	� Radial Basis Function
SMO	� Sequential Minimal Optimization
BFGS	� Broyden-Fletcher-Goldfarb-Shanno
R2	� Coefficient of determination
MAE	� Mean absolute error
RMSE	� Root mean squared error
HCs	� Healthy controls
LDA	� Linear Discriminant Analysis
EEG	� Electroencephalography

Acknowledgements
The authors would like to acknowledge the study program Intelligent 
Systems of the Multidisciplinary PhD studies at the University of Belgrade for 
providing the framework for this collaboration. Katarina Mitrovic is affiliated 
with the study program Intelligent Systems as a PhD student, and Andrej 
Savic as a lecturer. This research was partly supported by Ministry of Science, 
Technological Development and Innovation, Republic of Serbia (contract 

number for IP and MD: 451-03-47/2023-01/200146, contract number for AS: 
451-03-47/2023-01/200103).

Authors’ contributions
KM, IP and AS conceptualized and designed the study. IP and AR performed 
the data acquisition. All authors contributed to the data analysis and interpre-
tation. KM, IP and AS contributed in writing the manuscript. All authors read 
and approved the final manuscript.

Funding
This research received no external funding.

Availability of data and materials
The dataset used and analysed during the current study is available from the 
corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
The study was conducted in accordance with the Declaration of Helsinki, 
and approved by the Medical Ethics Committee of the Neurology Clinic, 
University Clinical Center of Serbia (protocol code 274/5 and date of approval: 
29.11.2019.). Informed consent was obtained from all subjects involved in the 
study.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 19 October 2023   Accepted: 5 December 2023

References
	1.	 Silberstein SD, Young WB (1995) Migraine aura and prodrome. Semin 

Neurol 15:175–182. https://​doi.​org/​10.​1055/s-​2008-​10410​21
	2.	 Headache Classification Committee of the International Headache 

Society (IHS) (2018) The international classification of headache disorders. 
3rd edition. Cephalalgia 38:1–211. https://​doi.​org/​10.​1177/​03331​02417​
738202

	3.	 Rasmussen BK, Olesen J (1992) Migraine with aura and migraine without 
aura: an epidemiological study. Cephalalgia 12:221–228. https://​doi.​org/​
10.​1046/j.​1468-​2982.​1992.​12042​21.x

	4.	 Viana M, Sances G, Linde M, Ghiotto N, Guaschino E, Allena M, Ter-
razzino S, Nappi G, Goadsby P, Tassorelli C (2017) Clinical features of 
migraine aura: results from a prospective diary-aided study. Cephalalgia 
37:979–989. https://​doi.​org/​10.​1177/​03331​02416​657147

	5.	 Hansen JM, Goadsby PJ, Charles AC (2016) Variability of clinical features in 
attacks of migraine with aura. Cephalalgia 36(3):216–224. https://​doi.​org/​
10.​1177/​03331​02415​58460

	6.	 Petrusic I, Dakovic M, Kacar K, Zidverc-Trajkovic J (2018) Migraine with 
aura: surface-based analysis of the cerebral cortex with magnetic reso-
nance imaging. Korean J Radiol 19:767–776. https://​doi.​org/​10.​3348/​kjr.​
2018.​19.4.​767

	7.	 Petrusic I, Viana M, Dakovic M, Goadsby PJ, Zidverc-Trajkovic J (2019) 
Proposal for a migraine aura complexity score. Cephalalgia 39(6):732–741. 
https://​doi.​org/​10.​1177/​03331​02418​815487

	8.	 Petrusic I, Viana M, Dakovic M, Zidverc-Trajkovic J (2019) Application of 
the Migraine Aura Complexity Score (MACS): clinical and neuroimaging 
study. Front Neurol 10. https://​doi.​org/​10.​3389/​fneur.​2019.​01112

	9.	 Sándor P, Dydak U, Schoenen J, Kollias S, Hess K, Boesiger P, Agosti R 
(2005) MR-spectroscopic imaging during visual stimulation in subgroups 
of migraine with aura. Cephalalgia 25:507–518. https://​doi.​org/​10.​1111/j.​
1468-​2982.​2005.​00900.x

https://doi.org/10.1055/s-2008-1041021
https://doi.org/10.1177/0333102417738202
https://doi.org/10.1177/0333102417738202
https://doi.org/10.1046/j.1468-2982.1992.1204221.x
https://doi.org/10.1046/j.1468-2982.1992.1204221.x
https://doi.org/10.1177/0333102416657147
https://doi.org/10.1177/033310241558460
https://doi.org/10.1177/033310241558460
https://doi.org/10.3348/kjr.2018.19.4.767
https://doi.org/10.3348/kjr.2018.19.4.767
https://doi.org/10.1177/0333102418815487
https://doi.org/10.3389/fneur.2019.01112
https://doi.org/10.1111/j.1468-2982.2005.00900.x
https://doi.org/10.1111/j.1468-2982.2005.00900.x


Page 12 of 12Mitrović et al. The Journal of Headache and Pain          (2023) 24:169 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	10.	 Silvestro M, Tessitore A, Di Nardo F, Scotto di Clemente F, Trojsi F, Cirillo M, 
Esposito F, Tedeschi G, Russo A (2022) Functional connectivity changes 
in complex migraine aura: beyond the visual network. Eur J Neurol 
29:295–304. https://​doi.​org/​10.​1111/​ene.​15061

	11.	 Tedeschi G, Russo A, Conte F, Corbo D, Caiazzo G, Giordano A, Conforti 
R, Esposito F, Tessitore A (2016) Increased interictal visual network con-
nectivity in patients with migraine with aura. Cephalalgia 36:139–147. 
https://​doi.​org/​10.​1177/​03331​02415​584360

	12.	 Abagnale C, Di Renzo A, Sebastianelli G, Casillo F, Tinelli E, Giuliani G, Tullo 
M, Serrao M, Parisi V, Fiorelli M, Caramia F, Schoenen J, Di Piero V, Coppola 
G (2023) Whole brain surface-based morphometry and tract-based 
spatial statistics in migraine with aura patients: difference between pure 
visual and complex auras. Front Hum Neurosci 17. https://​doi.​org/​10.​
3389/​fnhum.​2023.​11463​02

	13.	 Mitrović K, Petrušić I, Radojičić A, Daković M, Savić A (2023) Migraine 
with aura detection and subtype classification using machine learning 
algorithms and morphometric magnetic resonance imaging data. Front 
Neurol 14. https://​doi.​org/​10.​3389/​fneur.​2023.​11066​12

	14.	 Coppola G, Bracaglia M, Di Lenola D, Di Lorenzo C, Serrao M, Parisi V, Di 
Renzo A, Martelli F, Fadda A, Schoenen J, Pierelli F (2015) Visual evoked 
potentials in subgroups of migraine with aura patients. J Headache Pain 
16. https://​doi.​org/​10.​1186/​s10194-​015-​0577-6

	15.	 Fischl B (2012) FreeSurfer. Neuroimage 62:774–781. https://​doi.​org/​10.​
1016/j.​neuro​image.​2012.​01.​021

	16.	 Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, 
Buckner R, Dale A, Maguire R, Hyman B, Albert M, Killiany R (2006) An 
automated labeling system for subdividing the human cerebral cortex on 
MRI scans into gyral based regions of interest. Neuroimage 31:968–980. 
https://​doi.​org/​10.​1016/j.​neuro​image.​2006.​01.​021

	17.	 Hulley SB, Cummings SR, Browner WS, Grady D, Newman TB (2013) 
Designing clinical research: an epidemiological approach. 4th edn. Lip-
pincott Williams & Wilkins, Philadelphia, Appendix 6C, p 79

	18.	 Akoglu H (2018) User’s guide to correlation coefficients. Turk J Emerg 
Med 18:91–93. https://​doi.​org/​10.​1016/j.​tjem.​2018.​08.​001

	19.	 Bonett DG, Wright TA (2000) Sample size requirements for estimating 
Pearson. Kendall and Spearman correlations. Psychometrika 65(1):23–28. 
https://​doi.​org/​10.​1007/​BF022​94183

	20.	 Hastie T, Tibshirani R, Friedman J (2009) High-dimensional problems: p 
N. In: The Elements of Statistical Learning. Springer Series in Statistics. 
Springer, New York, pp 649–698. https://​doi.​org/​10.​1007/​978-0-​387-​
84858-7_​18

	21.	 Yu L, Liu H (2003) Feature selection for high-dimensional data: A fast 
correlation-based filter solution. In: Proceedings of the 20th International 
Conference on Machine Learning, vol. 2. Washington DC, 21-24 August 
2003, pp 856–863

	22.	 Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 
97(1–2):273–324. https://​doi.​org/​10.​1016/​S0004-​3702(97)​00043-X

	23.	 Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat 
Comput 14:199–222. https://​doi.​org/​10.​1023/B:​STCO.​00000​35301.​49549.​
88

	24.	 Shevade SK, Keerthi SS, Bhattacharyya C, Murthy KR (2000) Improve-
ments to the SMO algorithm for SVM regression. IEEE Trans Neural Netw 
11:1188–1193. https://​doi.​org/​10.​1109/​72.​870050

	25.	 Ben-Hur A, Ong CS, Sonnenburg S, Schölkopf B, Rätsch G (2008) Support 
vector machines and kernels for computational biology. PLoS Comput 
Biol 4. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10001​73

	26.	 Groß J (2003) Linear regression. In: Bickel P, Diggle S, Fienberg S, Krick-
eberg K, Olkin I, Wermuth N, Zeger S (eds) Lecture Notes in Statistics. 
Springer Science+Business Media, Berlin, pp 3–6

	27.	 Wettschereck D, Dietterich T (1992) Improving the performance of radial 
basis function networks by learning center locations. In: Moody JE, 
Hanson SJ, Lippmann RP (eds) Proceedings of the Advances in neural 
information processing systems, vol. 4. San Francisco, California, 1992, pp 
1133–1140

	28.	 Kvålseth TO (1985) Cautionary note about R2. Am Stat 39:279–285. 
https://​doi.​org/​10.​1080/​00031​305.​1985.​10479​448

	29.	 Qi J, Du J, Siniscalchi SM, Ma X, Lee CH (2020) On mean absolute error 
for deep neural network based vector-to-vector regression. IEEE Signal 
Process Lett 27:1485–1489. https://​doi.​org/​10.​1109/​LSP.​2020.​30168​37

	30.	 Yin T, Lan L, Tian Z, Li Z, Liu M, Gao Y, Liang F, Zeng F (2023) Parahip-
pocampus hypertrophy drives gray matter morphological alterations in 

migraine patients without aura. J Headache Pain 24. https://​doi.​org/​10.​
1186/​s10194-​023-​01588-z

	31.	 Messina R, Rocca MA, Valsasina P, Misci P, Filippi M (2022) Clinical cor-
relates of hypothalamic functional changes in migraine patients. Cepha-
lalgia 42:279–290. https://​doi.​org/​10.​1177/​03331​02421​10466​18

	32.	 Valfrè W, Rainero I, Bergui M, Pinessi L (2008) Voxel-based morphometry 
reveals gray matter abnormalities in migraine. Headache 48:109–117. 
https://​doi.​org/​10.​1111/j.​1526-​4610.​2007.​00723.x

	33.	 Guarnera A, Bottino F, Napolitano A, Sforza G, Cappa M, Chioma L, 
Pasquini L, Rossi-Espagnet M, Lucignani G, Figá-Talamanca L, Carducci C, 
Ruscitto C, Valeriani M, Longo D, Papetti L (2021) Early alterations of corti-
cal thickness and gyrification in migraine without aura: a retrospective 
MRI study in pediatric patients. J Headache Pain 22. https://​doi.​org/​10.​
1186/​s10194-​021-​01290-y

	34.	 Schwedt TJ, Chong CD, Wu T, Gaw N, Fu Y, Li J (2015) Accurate clas-
sification of chronic migraine via brain magnetic resonance imaging. 
Headache 55:762–777. https://​doi.​org/​10.​1111/​head.​12584

	35.	 Frid A, Shor M, Shifrin A, Yarnitsky D, Granovsky Y (2020) A biomarker for 
discriminating between migraine with and without aura: machine learn-
ing on functional connectivity on resting-state EEGs. Ann Biomed Eng 
48:403–412. https://​doi.​org/​10.​1007/​s10439-​019-​02357-3

	36.	 Zhang Q, Wu Q, Zhang J, He L, Huang J, Zhang J, Huang H, Gong Q (2016) 
Discriminative analysis of migraine without aura: using functional and 
structural MRI with a multi-feature classification approach. PLoS ONE 11. 
https://​doi.​org/​10.​1371/​journ​al.​pone.​01638​75

	37.	 Wang Q, Gao Y, Zhang Y, Wang X, Li X, Lin H, Xiong L, Huang C (2023) 
Decreased degree centrality values as a potential neuroimaging bio-
marker for migraine: a resting-state functional magnetic resonance imag-
ing study and support vector machine analysis. Front Neurol 13. https://​
doi.​org/​10.​3389/​fneur.​2022.​11055​92

	38.	 Zhu B, Coppola G, Shoaran M (2019) Migraine classification using soma-
tosensory evoked potentials. Cephalalgia 39:1143–1155. https://​doi.​org/​
10.​1177/​03331​02419​839975

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1111/ene.15061
https://doi.org/10.1177/0333102415584360
https://doi.org/10.3389/fnhum.2023.1146302
https://doi.org/10.3389/fnhum.2023.1146302
https://doi.org/10.3389/fneur.2023.1106612
https://doi.org/10.1186/s10194-015-0577-6
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1016/j.tjem.2018.08.001
https://doi.org/10.1007/BF02294183
https://doi.org/10.1007/978-0-387-84858-7_18
https://doi.org/10.1007/978-0-387-84858-7_18
https://doi.org/10.1016/S0004-3702(97)00043-X
https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/10.1109/72.870050
https://doi.org/10.1371/journal.pcbi.1000173
https://doi.org/10.1080/00031305.1985.10479448
https://doi.org/10.1109/LSP.2020.3016837
https://doi.org/10.1186/s10194-023-01588-z
https://doi.org/10.1186/s10194-023-01588-z
https://doi.org/10.1177/03331024211046618
https://doi.org/10.1111/j.1526-4610.2007.00723.x
https://doi.org/10.1186/s10194-021-01290-y
https://doi.org/10.1186/s10194-021-01290-y
https://doi.org/10.1111/head.12584
https://doi.org/10.1007/s10439-019-02357-3
https://doi.org/10.1371/journal.pone.0163875
https://doi.org/10.3389/fneur.2022.1105592
https://doi.org/10.3389/fneur.2022.1105592
https://doi.org/10.1177/0333102419839975
https://doi.org/10.1177/0333102419839975

	Machine learning approach for Migraine Aura Complexity Score prediction based on magnetic resonance imaging data
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Participants
	MRI data acquisition and post-processing
	Statistical analysis
	Machine learning

	Results
	Discussion
	Conclusions
	Acknowledgements
	References


