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Abstract 

Background Migraine is a disabling and chronic neurovascular headache disorder. Trigeminal vascular activation and 
release of calcitonin gene‑related peptide (CGRP) play a pivotal role in the pathogenesis of migraine. This knowledge 
has led to the development of CGRP(‑receptor) therapies. Yet, a substantial proportion of patients do not respond to 
these treatments. Therefore, alternative targets for future therapies are warranted. The current narrative review pro‑
vides a comprehensive overview of the pathophysiological role of these possible non‑CGRP targets in migraine.

Findings We covered targets of the metabotropic receptors (pituitary adenylate cyclase‑activating polypeptide 
(PACAP), vasoactive intestinal peptide (VIP), amylin, and adrenomedullin), intracellular targets (nitric oxide (NO), phos‑
phodiesterase‑3 (PDE3) and ‑5 (PDE5)), and ion channels (potassium, calcium, transient receptor potential (TRP), and 
acid‑sensing ion channels (ASIC)). The majority of non‑CGRP targets were able to induce migraine‑like attacks, except 
for (i) calcium channels, as it is not yet possible to directly target channels to elucidate their precise involvement in 
migraine; (ii) TRP channels, activation of which can induce non‑migraine headache; and (iii) ASICs, as their potential in 
inducing migraine attacks has not been investigated thus far.

Drugs that target its receptors exist for PACAP, NO, and the potassium, TRP, and ASIC channels. No selective drugs 
exist for the other targets, however, some existing (migraine) treatments appear to indirectly antagonize responses to 
amylin, adrenomedullin, and calcium channels. Drugs against PACAP, NO, potassium channels, TRP channels, and only 
a  PAC1 antibody have been tested for migraine treatment, albeit with ambiguous results.

Conclusion While current research on these non‑CGRP drug targets has not yet led to the development of effica‑
cious therapies, human provocation studies using these targets have provided valuable insight into underlying mech‑
anisms of migraine headaches and auras. Further studies are needed on these alternative therapies in non‑responders 
of CGRP(‑receptor) targeted therapies with the ultimate aim to pave the way towards a headache‑free future for all 
migraine patients.
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Introduction
Migraine is a chronic neurovascular headache disorder, 
typically characterized by moderate to severe headache 
attacks which are accompanied by nausea, vomiting, 
photo- and phonophobia [1]. Approximately one third 
of migraine patients additionally suffer from transient 
neurologic symptoms called migraine auras [1]. Migraine 
poses a large socioeconomic burden and is ranked as the 
most disabling disorder in women under the age of fifty 
[2] — in whom prevalence is the highest [3, 4]. While 
exact pathophysiological mechanisms remain elusive, 
increased (sub)cortical excitability, trigeminovascular 
activation, and release of the neuropeptide calcitonin-
gene related peptide (CGRP) — a member of the larger 
calcitonin family [5] — have been consistently demon-
strated to play a pivotal and causative role in the patho-
genesis of migraine [6, 7, 8]. The involvement of neuronal 
mechanisms (e.g. cortical spreading depression and sen-
sitization of perivascular sensory nerve terminals) and 
structures (e.g. the hypothalamus and brainstem) are 
crucial for the initiation of migraine attacks, including 
the premonitory and aura phase [9]. CGRP alone seems 
unable to either activate or sensitize mechanosensitive 
meningeal nociceptive neurons in rats [10]. Nevertheless, 
its discovery has made CGRP the primary pharmacologi-
cal target of recently approved (preventive) treatments 
that either target CGRP or its receptor, namely monoclo-
nal antibodies and gepants [11, 12]. Despite their efficacy 
and tolerability in a substantial portion of both episodic 
and chronic migraine patients [13, 14], a significant 
percentage of migraine patients are classified as ‘non-
responders’ and exhibit insufficient or no response to 
these CGRP(-receptor) targeted therapies. This empha-
sizes the need to explore the potential role of alternative 
substrates, which might serve as targets for future thera-
pies in a variety of migraine patients [15]. Furthermore, 
the complex pathogenesis of migraine and its heteroge-
neous manifestations in patients suggest that different 
signaling pathways (neuropeptides and neurotransmit-
ters) might be involved in different migraine patients 
[16] — highlighting the need to further explore these 
targets. These targets can broadly be categorized into (i) 
metabotropic receptors or G protein-coupled receptors, 
which include other members of the calcitonin family of 
peptides, i.e. amylin and adrenomedullin; (ii) intracellular 
targets; and (iii) ion channels. In this narrative review, a 
comprehensive overview is provided of the pathophysio-
logical role of these non-CGRP mechanisms in migraine. 
We aimed to focus on three main questions for each 
target, namely whether (i) it has the potential to induce 
migraine-like attacks; (ii) we have drugs that target its 
receptors; and (iii) drugs against the substance have been 
tested for migraine treatment. Our primary aim was to 

provide a summary of current clinical evidence of these 
targets, considering that they might serve as a target 
for future pharmacological treatments and a valuable 
extension of the current therapeutic armamentarium for 
migraine.

Metabotropic receptors (G protein‑coupled 
receptors)
Pituitary adenylate cyclase‑activating polypeptide
In 1989, pituitary adenylate cyclase-activating peptide 
(PACAP) was isolated from the hypothalamus [17] and 
over the years it has become a key molecule of interest 
in migraine research [18]. PACAP is an endogenous pep-
tide belonging to the vasoactive intestinal polypeptide 
(VIP), secretin, and glucagon superfamily of peptides, 
existing in two major isoforms; a 38-amino acid neuro-
peptide known as PACAP38 and a shorter 27-amino acid 
truncated version, known as PACAP27 [17]. PACAP38 
is more widely expressed, accounting for over 90% of 
PACAP in mammalian tissues and is detected in the 
trigeminal sensory and parasympathetic perivascular 
nerve fibers [18]. PACAP38 binds with equal affinity to 
the G-protein coupled receptors  VPAC1 and  VPAC2 [19, 
20], but it is also capable of binding to a third G-protein 
coupled receptor,  PAC1 [21] (Table  1). Activation of 
these receptors triggers the intracellular cyclic adenosine 
monophosphate (cAMP) pathway (Fig. 1).

Intravenous infusion of PACAP38 [57, 58] as well as 
PACAP27 [59] induced mild and short-lasting headaches 
in healthy volunteers. In patients with migraine without 
aura, intravenous infusion of both peptides additionally 
induced delayed migraine-like attacks. In double-blind, 
placebo-controlled, crossover trials, 58% of the patients 
reported migraine attacks after PACAP38 [57] and 55% 
after PACAP27 [60].

Given the interest in PACAP as a potential target for 
migraine therapeutics, several studies were conducted to 
investigate the migraine-evoking properties of PACAP. 
Preclinical studies indicated that PACAP-specific active 
transport systems exist across the blood brain barrier 
(BBB). However, once transported across the BBB, both 
isoforms are either rapidly degraded or diffuse back 
across the BBB into the blood, suggesting that PACAP 
exerts its effects mainly via peripheral mechanisms [61]. 
In vitro studies reported that PACAP38 was able to relax 
the vascular smooth muscle cells after abluminal, but 
not after luminal application in cerebral arteries [62]. In 
vivo studies on cerebral hemodynamics demonstrated no 
effect of intravenous infusion of PACAP38 on regional 
cerebral blood flow [63]. Moreover, in vivo studies 
using high-resolution magnetic resonance angiography 
reported a selective, marked and long-lasting vasodila-
tory effect of intravenous infusion of PACAP38 [20] and 
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PACAP27 [59] on the extracerebral, but not the middle 
cerebral arteries. Upon administration of sumatriptan, 
the headache symptoms were relieved alongside contrac-
tion of the middle meningeal artery, but not the mid-
dle cerebral artery [58]. These findings suggest that the 
migraine-inducing effect of at least PACAP38 may be 
outside of the BBB. The mechanism of action is more 
complex and involves mast cell degranulation [31] and/or 
prolonged vasodilation [20]. Degranulation of mast cells 

causes release of histamine. It has been shown in rats that 
PACAP38 induces histamine release [64], and in migraine 
without aura patients, histamine triggers migraine-like 
attacks [65]. Yet, pretreatment with clemastine, a hista-
mine (H1) antagonist, did not reduce the frequency of 
PACAP38-induced migraine attacks, suggesting an alter-
native mechanism for the migraine symptoms [66]. Using 
a double-blind, crossover design, a head-to-head compar-
ison study of PACAP38 and VIP reported a significantly 

Fig. 1 A schematic, yet simplified, overview of (the interaction of ) several CGRP‑related and non‑CGRP‑related targets that might be of interest as 
future therapies in migraine. The final action of these targets is the efflux of potassium via the opening of  KATP and  BKCa channels. The figure was 
created using Biorender. Abbreviations: AC, Adenylate Cyclase; ADM, Adrenomedullin; AMP, Adenosine Monophosphate;  AMY1, Amylin Receptor 
1;  AMY2, Amylin Receptor 2;  BKCa, Big Conductance Calcium‑Activated Potassium Channel; cAMP, Cyclic Adenosine Monophosphate; cGMP, 
Cyclic Guanosine Monophosphate; CGRP, Calcitonin Gene‑Related Peptide; sGC, soluble Guanylyl Cyclase;  KATP, Adenosine Triphosphate‑Sensitive 
Potassium Channel; NO, Nitric Oxide;  PAC1, Pituitary Adenylate Cyclase‑Activating Polypeptide Type 1 Receptor; PACAP, Pituitary Adenylate 
Cyclase‑Activating Polypeptide; PKA, Protein Kinase A; PKG, Protein Kinase G; PDE, phosphodiesterase; VIP, Vasoactive Intestinal Polypeptide; VPAC, 
Vasoactive Intestinal Polypeptide Receptor
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higher migraine-induction rate after PACAP38 compared 
to VIP (73% vs 18%, respectively). The study also showed 
prolonged meningeal artery dilation after PACAP38 but 
not after VIP infusion [20]. Moreover, sumatriptan was 
able to prevent PACAP38-induced migraine attacks, 
potentially via modulation of nociceptive transmis-
sion within the trigeminovascular system [67]. Thus, 
the prolonged meningeal artery dilation may play a role 
in PACAP38-induced migraine attacks. Receptor-wise, 
the main difference between PACAP38 and VIP is the 
over 1000-fold higher affinity of PACAP38 to the  PAC1 
receptor (Table  1), which positions the  PAC1 recep-
tor as a potential novel target for migraine treatment 
[68]. This led to the development of AMG301, a human 
monoclonal antibody selective for inhibition of the  PAC1 
receptor. However, clinical trials on AMG301 failed to 
prevent migraine [69]. Following the lack of success in 
targeting the  PAC1 receptor, antibodies targeting the 
PACAP ligands have been proposed. For further details 
on the role of PACAP (blockade) in headaches, includ-
ing migraine, we refer the readers to (recently published) 
reviews [70–72].

Vasoactive intestinal polypeptide
VIP is a 28-amino acid peptide with a short half-life of 
about one minute that is expressed in the intestine, pan-
creas, tongue, adrenal glands, urogenital tract, and brain 
(Table 1). VIP is thought to be involved in thermoregula-
tion, cell proliferation, immune response, smooth muscle 
tone, and nociception [32, 73]. Among the complex sce-
narios of the trigeminovascular activation in the migraine 
attack, VIP seems to play an important role along with its 
homologous peptide PACAP [74]. VIP is released by par-
asympathetic fibers and exerts its role through the afore-
mentioned receptors  VPAC1 and  VPAC2, which show a 
similar affinity to VIP and PACAP. VIP is theoretically 
able to bind also to  PAC1; however, this latter receptor 
has a 1000-fold higher affinity to PACAP and is, there-
fore, considered to be PACAP-specific [31, 73] (Table 1, 
Fig. 1). In recent years, the role of VIP in migraine attacks 
has been extensively studied. Levels of plasma VIP have 
been found to be increased in the interictal phase in 
both adults with episodic and chronic migraine versus 
controls [75]. Levels of VIP in blood and saliva, though 
elevated during a spontaneous migraine attack, undergo 
a significant reduction after triptan administration in 
adults with migraine [76]. VIP is also involved in crani-
ocervical vasomotor responses, and has a strong vasodi-
latory effect [76].

In a double-blind placebo-controlled crossover study, 
Hansen et  al. evaluated twelve healthy subjects who 
received intravenous VIP or placebo over 25 min, which 
induced a very mild and short-lasting headache in five 

patients (42%) during VIP infusion compared to only one 
patient during placebo infusion [77]. In another study 
performed by Pellesi et al. twelve healthy volunteers were 
subjected to continuous VIP infusion over two hours, 
which provoked mild headache in 67% of participants, 
mainly in the post-infusion period. Interestingly, 25% of 
the participants reported migraine-like attacks [78]. Rah-
mann et al. were the first to evaluate the headache occur-
rence and vasomotor response in migraine patients after 
infusion of VIP or placebo in a double-blind crossover 
study [79]. Patients who received VIP showed marked 
but short-lasting vasodilation of both intracranial and 
extracranial arteries and a mild immediate headache with 
respect to placebo but no migraine-like attacks [79]. A 
more recent study reported that a two-hour infusion of 
VIP induced migraine attacks in 71% of patients with a 
history of migraine without aura [80]. The only methodo-
logical difference between Rahmann et  al. [79] and the 
recent study from Pellesi et al. [80], was the duration of 
VIP infusion (i.e., 25 min versus 2 h). This suggests that 
the long-lasting (probably vascular) effect of VIP is more 
important for migraine induction. Indeed, the throbbing 
headache in migraine most likely originates in sensory 
fibers that transmit pain signals from intra- and extrac-
ranial (vasodilated) vessels, in particular arteries [81, 
82]. So far, selective blockade of VIP has not been stud-
ied as a treatment of migraine. As current results suggest 
that a prolonged vasodilation due to VIP might provoke 
migraine-like attacks, VIP blockade might be a potential 
target in migraine treatment.

Amylin
Amylin belongs to the calcitonin peptides superfam-
ily that includes CGRP, calcitonin, adrenomedullin, and 
adrenomedullin 2/intermedin [21, 37]. This is a 37-amino 
acid peptide structurally related to CGRP and is mainly 
released by the beta cells of islets of Langerhans in the 
pancreas [83] (Table 1). Amylin, which is secreted along 
with insulin, is involved in meal-ending satiation and 
inhibits insulin secretion [83, 84]. A key function of 
amylin is to maintain glucose homeostasis and reduce the 
uptake of glucose through its actions on the secretion of 
glucagon, gastric emptying, and caloric intake (reviewed 
by [85]). CGRP and amylin share CGRP and amylin 1 
 (AMY1) receptors, which have a similar structure com-
posed of receptor activity modifying protein 1 (RAMP1) 
in combination with either calcitonin receptor (CTR) for 
 AMY1, or calcitonin receptor-like receptor (CLR) for the 
CGRP receptor [5] (Table  1). As a result, the investiga-
tions of distribution and action of  AMY1 have been chal-
lenged by its cross-reactivity with the CGRP receptor 
[5] (Fig. 1). While CGRP has equal affinity for the CGRP 
receptor and  AMY1, amylin has a much lower affinity 
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than CGRP for the CGRP receptor [83]. Considering 
these limitations,  AMY1 has been posited to be distrib-
uted on structures involved in migraine pathophysiol-
ogy, such as the trigeminal ganglion (TG) and the spinal 
trigeminal complex [83].

The development of the amylin analog pramlintide 
has aided research into the involvement of amylin in 
migraine pathophysiology. Pramlintide is an antidiabetic 
drug, approved by the U.S. Food and Drug Adminis-
tration, with headache as a side effect in 13–17% of its 
users [83, 86]. In clinical trials, headache incidence was 
higher after pramlintide compared with placebo [83]. In 
coherence, intravenous infusion of pramlintide induced 
headache in 17% vs 6% with placebo in healthy subjects 
[87]. A subsequent provocation trial aimed to investi-
gate the migraine induction rate of the pramlintide. In 
this head-to-head comparison study between pramlin-
tide and CGRP in 36 patients 88% developed headache. 
Additionally, a migraine-like attack was triggered in 14 
patients (41%) after pramlintide and 19 patients (56%) 
after CGRP. There was no statistical difference between 
the induction rates as well as the attack phenotypes were 
similar on both experimental days [88]. Human phar-
macology studies demonstrated that one or more of 
the CTR/RAMP complexes  (AMY1,  AMY2, and  AMY3 
receptors) likely mediate the pramlintide-induced effects 
and migraine-like attacks, rather than CLR-based recep-
tors (namely, the CGRP receptor or adrenomedullin-
responsive receptors  (AM1,  AM2), which are described in 
the next section) [88]. Noteworthy, pramlintide produced 
little arterial vasodilation compared to CGRP (superficial 
temporal artery dilation, mean maximum change from 
baseline approximately 8.5% versus 115%, respectively), 
which could be explained by its lower potency com-
pared to CGRP (> 1000-fold lower potency) for the CGRP 
receptor and possibly by a different distribution of CTR- 
and CLR-coupled receptors in the vascular tissue [88]. 
Further studies showed an increased amylin blood level 
in chronic migraine with basal level of pain, but not in 
interictal episodic migraine, suggesting that amylin may 
serve as a diagnostic biomarker for chronic migraine [89].

There is currently no treatment available to specifically 
antagonize the  AMY1 receptor, although CGRP recep-
tor-targeting treatments erenumab and rimegepant have 
been shown to antagonize  AMY1 with a lower affinity 
compared with the CGRP receptor [90–92].

Adrenomedullin
Adrenomedullin is a 52-amino acid peptide belong-
ing, like amylin, to the calcitonin peptide superfamily. 
It shares several structural features with CGRP such as 
a C-terminus amide and a loop structure in the N-ter-
minus [93]. The adrenomedullin receptors  AM1 and 

 AM2 have a structure composed of RAMP2 or RAMP3, 
respectively, in combination with CLR. Interestingly, 
adrenomedullin acts on the CGRP receptor as well but 
is ten-fold less potent than CGRP [40] (Table  1). While 
CGRP and adrenomedullin are both released by sen-
sory C-fibers, adrenomedullin is highly expressed by the 
vascular endothelium in contrast to CGRP [37, 94] – in 
particular within the cerebral circulation [38] (Fig.  1). 
Adrenomedullin stimulates endothelial-induced vaso-
dilation within the cerebral circulation and plays an 
important role in the regulation of the BBB [95]. Nev-
ertheless, the vasodilatory and hypotensive ability of 
adrenomedullin is less potent compared with CGRP. 
Expression of adrenomedullin and its receptors has also 
been described in neurons of the dorsal root ganglia and 
TG [37, 39], suggesting a role for adrenomedullin in the 
pain pathway. With a widespread distribution in various 
tissues, adrenomedullin plays a role in cardioprotection, 
reproduction, renal function, and lymphatic system [96]. 
Its anti-inflammatory, anti-apoptotic, and proliferative 
properties give adrenomedullin a potent protective role. 
This raised the interest for its therapeutic applications, 
notably in pulmonary hypertension and acute myocardial 
infarction (reviewed by [97]). The cross reaction of adre-
nomedullin with CGRP has spiked interest in its involve-
ment in migraine pathophysiology. In mice, intrathecal 
administration of adrenomedullin induced mechanical 
hyperalgesia and inflammatory pain [98].

Two clinical studies explored the ability of adre-
nomedullin to provoke a migraine-like attack. A recent 
placebo-controlled two-way crossover study showed that 
adrenomedullin administration in 20 migraine patients 
induced a migraine-like attack in 55% of patients com-
pared with 15% after placebo [99]. Conversely, twelve 
migraine patients showed in another study the same 
frequency (33.3%) of migraine-like attack after adre-
nomedullin administration compared with placebo, but 
the amount of adrenomedullin infused was slightly lower 
compared with the aforementioned study [100]. Finally, 
adrenomedullin was associated with headache induction 
in other human studies designed to explore the vascu-
lar effects of adrenomedullin [5]. Hence, adrenomedul-
lin might induce migraine at possibly supraphysiological 
concentrations, by also activating the CGRP receptor, but 
the possibility of the occurrence of an attack at physio-
logical concentrations is unclear to the best of our knowl-
edge. A previous study in migraine patients showed lower 
plasma levels of adrenomedullin in the ictal and inter-
ictal phase compared to controls, suggesting an imbal-
ance between CGRP and adrenomedullin in the migraine 
pathophysiology [101]. Moreover, which adrenomedul-
lin-responsive receptors  (AM1,  AM2) or the CGRP 
receptor mediate these migraine-like responses have yet 
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to be elucidated [99].  AM22-52 is the only adrenomedul-
lin antagonist available but seems to be limited by its 
weak antagonizing effect on adrenomedullin responses 
(including adrenomedullin-stimulated cAMP) in rat 
cells, although it has been shown to have CGRP inhibit-
ing effects [102, 103]. There is currently no treatment 
available to specifically antagonize adrenomedullin or its 
receptors, although one in vitro study demonstrated that 
the CGRP-receptor targeting monoclonal antibody ere-
numab and the CGRP-receptor small-molecule antago-
nist telcagepant antagonized not only CGRP, but also 
adrenomedullin signaling at the CGRP receptor [104].

Intracellular targets
Nitric oxide
Nitric oxide (NO) is a free radical synthesized by iso-
forms of nitric oxide synthase (NOS): endothelial NOS 
(eNOS), predominantly expressed in the endothe-
lium and exerting a vasodilating effect; neuronal NOS 
(nNOS), present in central and peripheral nervous sys-
tem; and inducible NOS (iNOS), which is involved in 
the innate immune system [46]. Upon binding of NO 
to its intracellular receptor, soluble guanylyl cyclase 
(sGC), levels of the second messenger cyclic guanosine 
monophosphate (cGMP) increase, and this leads to the 
opening of adenosine triphosphate-sensitive potassium 
 (KATP) channels and big conductance calcium-activated 
potassium  (BKCa) channels, which are speculated to play 
a crucial role in generating migraine attacks [105, 106] 
(Table 1, Fig. 1). The NO donor nitroglycerin, also known 
as glyceryl trinitrate, is one of the most commonly used 
experimental triggers for migraine headache [107]. Both 
headache of a pulsating nature during the administration 
of the drug and headache with a delayed onset of action 
were observed, fulfilling the characteristics of migraine 
without aura. There is also an increased sensitivity to 
nitroglycerin among migraine patients compared with 
individuals without a history of headache [108].

There have been studies towards new drugs targeting the 
arrest of the NO-cGMP cascade. An experiment in mice 
demonstrated that administration of the sGC stimulator 
VL-102 produced acute and sustained hyperalgesia. This 
effect was blocked by an sGC inhibitor (ODQ, 1H-[1,2,4]
oxadiazolo[4,3,-a]quinoxalin-1-one), but also by several 
antimigraine medications (sumatriptan, topiramate, and 
propranolol) [109].

Additionally, researchers have explored NOS inhi-
bition. Non-selective inhibitors may have important 
limitations mainly because of the significance of eNOS 
in regulating blood pressure [110], and therefore, 
researchers have focused on selective drugs. In a study 
of seven patients with migraine without aura, a signifi-
cant increase of iNOS was observed during unprovoked 

migraine attacks [111]. Nevertheless, the highly selective 
iNOS inhibitor GW274150 failed to show efficacy both 
in acute [112] and preventive [113] treatment. In another 
study NXN-188, a combined nNOS inhibitor and seroto-
nin (5-HT1B/1D) receptor agonist, inhibited the induced 
release of immunoreactive CGRP (iCGRP) from rat dura 
mater, TG, and trigeminal nucleus caudalis (TNC). Nev-
ertheless, NXN-413, a selective nNOS inhibitor, inhib-
ited iCGRP release from dura mater, but not from the 
TG and TNC in the same study [114]. NXN-188 did not 
reach a significant advantage over placebo in terminat-
ing migraine attacks in a small (n = 50) randomized trial 
[115]. Despite the ambiguous data concerning NOS inhi-
bition as potential therapeutic target, the evidence of 
involvement of NO-cGMP cascade in the pathophysiol-
ogy of migraine is constantly growing. Hence, there is a 
need for more reliable clinical trials, possibly on larger 
samples, to identify novel drug candidates targeting this 
molecular pathway.

Phosphodiesterase‑3
CGRP activates adenylate cyclase transmembrane recep-
tors in cerebral vascular cells and increases the second 
messenger cAMP. Intracellular accumulation of cAMP 
induces migraine attacks [116]. Phosphodiesterase-3 
(PDE3) degrades cAMP (Fig. 1). In rats, PDE3 and cyclic 
nucleotide-gated ion channels are expressed in the 
trigeminovascular system, which includes the middle 
cerebral artery, basilar artery, TG, and dura mater [117]. 
Therefore, modulation of PDE3 in cAMP levels and acti-
vation of cyclic nucleotide-gated ion channels may play 
a role in the pathogenesis of migraine-like attacks [116]. 
PDE3 is indeed expressed in the TG, vascular smooth 
muscle cells, and cerebral arteries [118] (Table  1). 
Trigeminal neurons have been shown to be sensitized 
through an increase of cAMP [119, 120]. PDE3A and B 
are found with CGRP in the neuronal part of the trigemi-
novascular system [116]. Also, PDEs 3 and 4 degrade 
cAMP in vascular smooth muscle cells [121].

Since cilostazol inhibits PDE3, intracellular cAMP 
accumulates and the opening of  KATP channels is facili-
tated, causing vascular smooth muscle relaxation and 
dilatation of cerebral arteries [122, 123] without affecting 
regional blood flow [116, 121, 124]. Thus, cilostazol leads 
to activation of the pathway that is further downstream 
than CGRP and PACAP (Fig.  1), and has a high suc-
cess-rate to induce migraine-like attacks in 86% of adult 
patients with migraine without aura [116, 120, 125, 126], 
but also in healthy individuals [121]. Such is its potential 
role in migraine headache: modulating nociceptive input 
in regions where pain is processed in the neuronal parts 
of the trigeminovascular system [125]. These observa-
tions highlight the possible role of PDE3 in pain pathways 
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involved in migraine headache [120, 125]. The effects of 
sumatriptan were studied in a cross-over study by Falk-
enberg et al. including migraine without aura patients in 
whom cilostazol-induced migraine was provoked. The 
majority of these patients were triptan responders, and 
the reduction in headache severity in the group given 
oral 50 mg sumatriptan was not significant at two hours 
(primary end-point), but rather at four hours when com-
pared with the placebo group [118]. The authors con-
cluded that, therefore, no clear effect was observed of 
sumatriptan on reducing cilostazol-induced migraine 
attacks. Hereafter, a double-blind cross-over study was 
conducted to study migraine headache development 
after cilostazol administration in migraine without aura 
patients [125]. The reduction of headache intensity in the 
group given 6 mg subcutaneous sumatriptan was signifi-
cant at the second and fourth hour compared with the 
placebo group [125]. These results indicate that subcu-
taneous treatment rather than oral administration with 
sumatriptan is more effective in these cilostazol-induced 
headaches. These differences are probably related to its 
different pharmacokinetic properties, namely the faster 
peak in plasma concentrations, although a stronger pla-
cebo effect cannot be ruled out [125]. Khan et al. admin-
istered oral and subcutaneous sumatriptan to patients 
who developed migraine-like headaches after cilostazol 
administration. They stated that the highest decrease in 
headache score was after subcutaneous administration, 
whereas there was a smaller decrease in oral sumatriptan 
and other rescue drugs [120].

Thus, the modulation of PDE3 in intracellular cAMP 
levels may play a role in migraine attacks. Subcutane-
ous sumatriptan rather than oral sumatriptan may be 
an effective treatment modality for cilostazol-induced 
migraine attacks and headache intensity, although 
both exert relatively modest effects. Further studies 
are warranted to elucidate whether the modest extra-
cellular effects of sumatriptan are due to its inability to 
completely block intracellular responses, namely the 
increased cAMP levels, induced by cilostazol [118].

Phosphodiesterase‑5
Phosphodiesterase-5 (PDE5) is an intracellular enzyme 
that breaks down cGMP. Inhibition of PDE5 increases 
intracellular cGMP levels, leading to smooth muscle 
cell relaxation and neuronal stimulation [127] (Table 1, 
Fig.  1). Conversely, CGRP acts via increasing intracel-
lular cAMP levels. PDE5 inhibitors, such as sildenafil 
and tadalafil, were initially produced for cardiovascular 
disorders, however, they were later demonstrated to be 
effective for sexual impotence and to have headache-
inducing capacities [127, 128]. Indeed, several experi-
mental studies revealed that up to 83% of migraine 

patients experience migraine-like headaches after 
sildenafil administration [129], and up to one third 
of individuals without migraine may also experience 
headaches [130].

CGRP and sildenafil act on cAMP and cGMP intra-
cellular signaling pathways, respectively [131]. None-
theless, patients experience migraine attacks with 
overlapping clinical features after administration of 
CGRP and sildenafil [131] suggesting that these two 
intracellular pathways likely converge in a downstream 
common denominator responsible for the biological 
migraine initiating cascade. Accordingly, mounting 
preclinical evidence supports a reciprocal influence 
between cAMP and cGMP pathways [47, 131–133]. 
Notably, administration of sildenafil induced more 
attacks in migraine patients compared to CGRP (89% 
vs 67%), potentially reflecting a more potent migraine-
induction capacity [131].

Whilst the intracellular culprits of PDE5 inhibitors, 
and headache-inducing substances at large, have been 
recognized, their biological effects and site of action 
within the nervous system are still not fully understood. 
Initial investigations focused on potential cerebrovas-
cular changes mediated by these substances. One study 
found no large intracranial or extracranial artery dila-
tion after administering PDE5 inhibitors [130]. Another 
study observed dilation of intradural and extradural 
middle meningeal artery after CGRP or PDE5 inhibi-
tor infusion, yet with no direct temporal correlation 
between arterial dilation and pain, suggesting this may 
reflect the activation of perivascular dural afferents 
[134]. Therefore, sensitization of perivascular sensory 
nerve terminals represents arguably a critical biological 
mechanism of migraine attack initiation [129]. Addi-
tionally, a transient increase in glutamate levels in the 
brainstem has been observed exclusively after PDE5 
inhibitor administration, suggesting a possible different 
effect than CGRP [135]. Yet different pharmacokinetics 
properties of these molecules, namely the imperme-
ability of the BBB to CGRP, but not to PDE5 inhibitors, 
may explain these results without discarding the com-
mon signaling pathway hypothesis.

PDE5 modulation represents a future unexplored 
therapeutic landscape. However, at present, no specific 
drugs which aim to increase PDE5 levels have been 
investigated in migraine. Thus, emulating the virtuous 
bench-to-bedside journey of the CGRP system may 
ensure further outstanding achievements in migraine.

Ion channels
A large range of ion channels are involved in migraine, 
likely including specific potassium channels and calcium 
channels. Furthermore, transient receptor potential (TRP) 
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channels and acid-sensing ion channels (ASICs) have 
been proposed to play a role in migraine, due to their 
important roles in the trigeminothalamic and nociception 
systems. Yet, considering the fact that the conduction of 
human provocation models to study the specific activa-
tion of ASICs in humans is lacking, we consider them as 
two promising targets for future research (Box 1).

Potassium channels
Potassium channels are membrane-spanning protein com-
plexes that are involved in the transportation of potas-
sium ions to mediate or increase the membrane potential. 
Their activation is dependent on the regulatory domain 
differentiating the large number of potassium channels. 
Opening of  KATP channels causes relaxation of vascular 
smooth muscle cells by  K+ efflux, a reversible hyperpolari-
zation of the membrane, and decreased intracellular  Ca2+ 
[123, 136]. These phenomena can consequently lead to the 
induction of a headache attack [137, 138].

High extracellular concentrations of potassium can 
trigger cortical spreading depression (CSD), which is 
thought to be a cause of aura in migraine with aura 
patients [139, 140], activating an inflammatory cascade, 
which leads to an increase of intracellular calcium and 
release of proinflammatory peptides (e.g. CGRP).

Genome-wide association studies in migraine patients 
identified several potassium channel linked genes that 
were likely susceptible, providing further evidence for 
their involvement (reviewed in [141]). Mutations in the 
two-pore-domain potassium channel TRESK have been 
identified in migraine patients. TRESK inhibits TREK1 
and TREK2, thereby increasing excitability of the TG 
[142]. Reducing the TG excitability using the TREK1/
TREK2 agonist ML67-33 reduced an NO donor-induced 
migraine-like phenotype in mice in a similar manner as 
the CGRP receptor antagonist olcegepant. Moreover, it 
completely reversed TG-mediated NO donor-induced 
facial allodynia in rats [143].

Acting by direct opening of  KATP channels, levcromaka-
lim is a potent vasodilator as well as a trigger of head-
ache in healthy subjects and of migraine-like attacks in 
migraine patients following systemic administration [136, 
144]. Some observations revealed that levcromakalim 
acts downstream from the CGRP receptor and hypersen-
sitivity caused by levcromakalim is independent of direct 
CGRP release from the TNC and the TG [136, 139]. On 
the other hand, experimental mice models showed that 
levcromakalim-induced hypersensitivity was blocked by 
CGRP neutralization [123].

In vitro studies showed that glibenclamide, a non-spe-
cific  KATP channel blocker and a widely used anti-diabetic 
drug, attenuated PACAP-induced dilation of rat cerebel-
lar and human pulmonary arteries [144, 145].

In healthy volunteers, treatment with glibenclamide did 
not mitigate PACAP38-induced headache and vascular 
changes [136]. A randomized, placebo-controlled cross-
over study in healthy individuals showed that administra-
tion of glibenclamide did not induce headache, nor did 
it prevent headache or changes in blood pressure and 
heart rate induced by levcromakalim. Yet, the authors 
found that glibenclamide rather delayed the onset of 
the induced headaches [146]. More selective  KATP chan-
nel blockers are needed to clarify potential mechanisms 
of the  KATP channel in pathways involved in migraine, 
including the PACAP38 signaling pathway.

In contrast to  KATP channels, the specific voltage-gated 
potassium Kv7 channels potentially reduce migraine 
when opened, as demonstrated in male rats. The Kv7 
channel opener retigabine significantly reduced basal and 
TRP channel-induced CGRP release in vitro [147].

Another investigative target includes the  BKCa chan-
nels, which are widely expressed in the brain and car-
diovascular system and facilitate potassium efflux, 
hyperpolarization, and thus decreased neuronal excit-
ability [148, 149].  BKCa channels require both membrane 
depolarisation and binding of  Ca2+ for opening, and have 
been found to be co-localised with voltage-gated  Ca2+ 
channels [150]. Of particular interest here is their role in 
the activation of vascular smooth muscle cells and related 
involvement in the trigeminovascular system [151]. 
Additionally, they modulate neurotransmitter release in 
peripheral neurons, and their opening has been shown 
to inhibit Aδ-fiber firing in the rat’s TNC when applied 
directly [152], whereas genetically ablating them from 
sensory neurons in mice increased nociceptive behav-
iors in some but not all pain models [153].  BKCa channels 
have furthermore been connected with various signaling 
pathways and factors known to contribute to migraine, 
such as CGRP and PACAP [154]. This does indeed 
raise the possibility of downstream involvement in the 
migraine pathophysiology.

Results of a small pilot study confirmed that pharma-
cologic opening of  BKCa channels using a small vasoac-
tive molecule (MaxiPost) did indeed provoke cephalic 
vasodilation in 90% of healthy subjects, as compared to 
30% with placebo injection [155]. Finally, Al-Karagholi 
et al. demonstrated that MaxiPost induced migraine-like 
attacks – and not merely vasodilatory headache – in 21 of 
22 migraine patients [156].

Both preclinical and clinical findings, albeit contrast-
ing, might reflect the wide diversity of  BKCa channel 
types [148, 150]. Therefore, molecules selectively tar-
geting the channels or specific protein subunits of  BKCa 
that are involved in migraine pathophysiology should be 
preferably developed. This in order to avoid non-selec-
tive action and related side effects, as is the case with 
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calcium channel blockers and other drugs currently used 
for migraine therapy [157]. These findings, analogous 
to earlier research on CGRP, suggest that  BKCa channel 
antagonists could prove to be promising molecules in the 
pharmacotherapy of migraine.

Calcium channels
Calcium channels are voltage-gated ion channels that 
regulate the flow of  Ca2+ ions, an essential intracellular 
second messenger. Calcium blockers have long been used 
as migraine prophylactic drugs that target broad calcium 
receptors such as nimodipine and flunarizine that, fol-
lowing the cerebral hypoxia hypothesis, aim to reduce 
excessive intracellular influx of calcium ions that results 
from increased neuronal excitability [158, 159]. It should, 
however, be noted that the efficacy of these drugs is likely 
not mediated by calcium channel action but by other 
mechanisms, including the suppression of CSD [160].

One of the main calcium channels implicated in 
migraine is the voltage-gated  Cav2.1, found in presyn-
aptic terminals throughout the central nervous system 
with its main role involving neurotransmitter release 
and dendritic transients [161, 162]. These channels give 
rise to P/Q-type calcium currents and its encoding gene, 
CACNA1A, stands as a classical genetic locus associated 
with the rare genetic disease familial hemiplegic migraine 
(FHM) [163].

Several missense mutations have been found in FHM 
families, including those that code for the voltage sen-
sor and pore structures in the α1 subunit of the chan-
nel [163–165]. There is evidence that these mutations 
present gain-of-function changes in cortical excitatory 
neurotransmission, reducing the threshold for CSD, all 
the while interneuron inhibition remains intact, poten-
tially driving an excitatory-inhibitory imbalance [166, 
167]. Additionally, this mechanism may also play a role 
in descending pain modulatory pathways, as its block-
ade has been shown to enhance trigeminal transmission 
in the rat [168]. Furthermore, Chan et al. [169] assessed 
trigeminovascular activity in a genetic mouse model 
of FHM and found responses that reflect desensitiza-
tion of CGRP receptors. However, most (experimen-
tal) treatments for CACNA1A-associated disorders do 
not specifically target this channel. One possible excep-
tion is 4-aminopyridine; more widely known as a potas-
sium channel blocker, pharmacologic activity on calcium 
channels has been described [170]. To our knowledge, no 
clinical studies on migraine using this molecule have yet 
been carried out. Nonetheless, in the context of CAC-
NA1A-associated spinocerebellar ataxia type 6, some 
preliminary and preclinical possibilities for selective 
small molecules were reported in 2018 [171].

The role of calcium channels in migraine has been 
explored to a limited extent, due to its many roles in neu-
rotransmitter release and secondary messenger pathways, 
which makes it difficult to extract its precise involvement 
in migraine. Further work on calcium channels and how 
they interact with other neurotransmitter circuits, espe-
cially in the case of genetic migraine, may uncover new 
potential therapeutic targets of migraine pathophysiology.

Transient receptor potential (TRP) channels
The TRP channel superfamily consists of non-selec-
tive cation channels that mediate the transmembrane 
flow of calcium and are mainly implicated in sensory 
transduction. They are also thought to modulate pain 
processing and particularly the vanilloid TRP (TRPV) 
channel subfamily is considered relevant here [172, 
173]. Several TRP channels have been identified as 
potential antimigraine targets, including the TRPV1 
and TRP ankyrin 1 (TRPA1) channels [174] (Fig.  1). 
Briefly, TRPV1 channels process thermal and pH-
related nociception, are involved in calcium release 
in sensory neurons, and are expressed in the trigemi-
nal pathway [175, 176]. Their relevance in migraine 
extends further, as activation of these channels induces 
release of CGRP and increases TG activity, which is 
reversed by sumatriptan [175, 177]. TRPV1 channel 
modulators have had moderate success in the treat-
ment of migraine, with part of their antinociceptive 
activity being affected by topical agonists, such as 
capsaicin, to desensitize the channel [178]. Capsai-
cin is a TRPV1 agonist and its intranasal administra-
tion, as well as its synthetic isosomer civamide, have 
shown some efficacy for the treatment of cluster head-
ache and migraine [179, 180]. However, discrepancies 
in efficacy and safety between preclinical and clinical 
studies justify the need for further research [175].

On the other hand, the TRPA1 channel has attracted 
attention due to its ability to transduce a multitude of 
chemical agents such as formaldehyde and cigarette 
smoke, many of which are also common migraine 
triggers [174]. Notably, the “headache tree” extract, 
umbellulone, is able to trigger headache when inhaled, 
and has shown to act on the trigeminovascular system 
to induce CGRP release from trigeminal afferents in 
the dura [181]. Parthenolide, another herb extract, is 
a partial TRPA1 agonist and has the ability to desen-
sitize it, effecting anti-migraine responses on CGRP-
mediated trigeminal activity [182], and positioning it 
as a potential migraine target. We refer the readers to 
several excellent reviews on TRP channels for further 
details on their role in the pathophysiology of migraine 
[183, 184].
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Box 1: ASICs
ASICs are voltage-insensitive cation channels widely 
expressed throughout the nervous system. Four dif-
ferent members have been described (ASIC1-4). 
ASIC1-3 are pH sensitive, each opening at a specific 
pH range. Decreased extracellular pH as well as ASIC 
activation may play a role in migraine. Most ASICs 
are expressed on primary sensory neurons, however 
ASIC3 is highly expressed in peripheral neurons. 
Given that NO donors can potentiate ASIC3 and 
increase acid-evoked pain [185], its inhibition was 
tested using a rat model. The ASIC3 blocker APETx2 
inhibited durovascular-evoked and NO-induced sen-
sitisation of trigeminal nociceptive responses [186]. 
Specific blockade of ASIC1, the most predominantly 
expressed ASIC in the central nervous system, using 
black mamba venom derived mambalgin-1 or taran-
tula venom derived PcTx1 attenuated pain signaling 
in the lower spinal cord, and might also be relevant in 
other sites such as the trigeminal system [187]. ASICs 
might contribute to altered activity in the hypothala-
mus, CSD and sensory input from meninges, therefore 
ASICs have also emerged as new potential therapeu-
tic targets for migraine [188] (and reviewed in [187]). 
In order to block all ASICs and be most effective the 
pharmacological agents might need to gain access to 
the central nervous system [187]

Future directions
Human provocation studies have contributed to an 
enhanced understanding of the pathophysiology of 
migraine and to the identification of possible new targets 
of treatment for migraine. Despite our growing knowl-
edge on these alternative targets – all leading to vaso-
dilation of intracranial arteries (Fig.  1) – no successful 
therapies to block CGRP-independent mechanisms have 
been developed yet. Indeed, an antibody to block PACAP, 
which is a member of the VIP, secretin, and glucagon 
superfamily of peptides, has been the first developed 
alternative therapy, although it was not effective in tri-
als. Further, data on blockade of NO-induced responses 
have been ambiguous, and treatment with glibenclamide 
did not mitigate PACAP38-induced and levcromakalim-
induced headaches. Yet, TRPV1 agonist capsaicin and 
civamide have shown some efficacy by their ability to 
desensitize nerve endings that express these channels. 
Further research is needed to develop alternative targeted 
therapies to prevent migraine (i.e. targeting VIP, amylin, 
adrenomedullin, PDE3, PDE5, calcium channels, and 
ASICs). Theoretically, blockade of the most downstream 
targets (e.g.  KATP channels) – being the “end-chain” in the 
cascade – might lead to more efficacious outcomes, but 
also to possible severe and highly undesired side effects 
[189]. Whether this explains the highest induction rate of 
levcromakalim (Fig. 2) remains to be demonstrated.

Fig. 2 Mean induction rates (with their standard deviations) of migraine attacks (irrespective of aura symptoms) of non‑CGRP targets compared 
to placebo, as observed in placebo‑controlled studies in migraine patients. PACAP38 rate is based on [57] and [20] – the latter is a head‑to‑head 
comparison study of PACAP38 and VIP (instead of placebo); PACAP27 rate is based on [60]; VIP rate is based on [20] with an active control (PACAP38) 
and [79, 80]. Please note that infusion duration in the study of Rahmann et al. [79] was 25 minutes, while it was two hours in the study of Pellesi et al. 
[80]; pramlintide rate is based on [88] which was compared to CGRP and not to placebo; adrenomedullin rate is based on [99]; nitroglycerin rate is 
based on [190]; cilostazol (PDE3 inhibitor) rate is based on [116]; sildenafil (PDE5 inhibitor) rate is based on [129], and levcromakalim rate is based on 
[137, 191]. Please note that [191] only included migraine with aura patients
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However, to study such substances as potential can-
didates for migraine therapy, the presence of selective 
agonists or stimulating agents are indispensable. While 
the majority of non-CGRP targets were able to induce 
migraine-like attacks with relatively high induction rates 
(Fig. 2), this was not the case for (i) calcium channels, as 
it is not yet possible to directly target channels to elu-
cidate their precise involvement in migraine; (ii) TRP 
channels, activation of which can induce non-migraine 
headache; and (iii) ASICs, as their the potential in induc-
ing migraine attacks has not been investigated thus far. 
While we emphasize that the current overview is far from 
complete, we have aimed to provide a comprehensive 
overview of the (clinically) most relevant future targets 
for migraine. Yet, further studies on the receptor phar-
macology and dual (and overlapping) agonism of several 
other members of the CGRP/calcitonin peptide family 
and calcitonin mimetics are warranted, as well as knowl-
edge on clinical consequences of receptor internaliza-
tion and recycling. As an example, salmon calcitonin was 
already approved as a treatment of metabolic bone dis-
eases [192] and has been shown to have antinociceptive 
properties, posing it as a potential treatment migraine 
option as well [93, 193]. Rat studies have shown that it 
might ameliorate migraine-like pain through modulation 
of CGRP release and mast cell degranulation in the dura 
mater [194]. Salmon calcitonin shows potent  AMY3 ago-
nism, but also binds with approximately a similar affinity 
as human calcitonin to CTR, while amylin/pramlintide 
can also activate these latter receptors [93, 195].

Further, human provocation studies, in which these 
(non-CGRP) targets are studied through their ability 
to induce migraine attacks, are necessary. A limitation 
of these human provocation studies is that they cannot 
reveal the initial cause of spontaneous migraine attacks 
[105], nor are they able to provoke migraine auras con-
sistently [126, 196], except for levcromakalim [137]. In 
addition, they do not induce attacks in all patients or 
account for differences in trigger sensitivity between 
migraine patients and the interplay of different com-
pounds [144]. Indeed, theoretically, it should be consid-
ered that blockade of one system might lead to (over)
activation of compensatory mechanisms. Therefore, the 
development of blockers (antagonists) of one (isolated) 
target or system might not guarantee efficacious head-
ache relief in all migraine patients. Also, in different 
migraine patients, different pathways might be primar-
ily activated – as demonstrated by the clinical study of 
Ghanizada et al. who showed that a subgroup of migraine 
patients only respond to CGRP and a few only to pram-
lintide [88]. It remains to be demonstrated whether this 
subgroup of patients are also non-responders to CGRP(-
receptor) targeted therapies.

Future translational studies are warranted to further 
optimize human provocation models that allow the study 
of novel drug targets in migraine. In addition, basic and 
clinical studies are needed to improve our understanding 
on (i) the role of these non-CGRP targets in uncontrolled 
settings, given the controlled environment of the human 
provocation studies; (ii) the eventual role of additional 
targets that might play a role in the pathophysiology of 
auras; (iii) potential (long-term) side effects, especially 
considering the physiological role of e.g. adrenomedul-
lin in the cardiovascular system [197]; (iv) the relation-
ship between the relative contribution of different targets 
(e.g. amylin, adrenomedullin, PACAP) in the ictal and 
interictal phase in both EM and CM patients; and (v) the 
role of sex (steroids) on the activity of these different tar-
gets, and vice versa, considering the marked influence of 
sex steroids in migraine [198]. In the longer term, stud-
ies should be conducted to investigate the potential effi-
cacy of these alternative therapies in non-responders of 
CGRP(-receptor) targeted therapies with the ultimate 
aim to, hopefully, pave the way towards a headache-free 
future for all migraine patients.

Conclusion
In conclusion, the development of alternatives for 
CGRP(-receptor) blocking agents is essential, given the 
amount of non-responders to these drugs and the poten-
tial (long-term) side effects. While current research on 
these non-CGRP drug targets has not led to the develop-
ment of efficacious therapies yet, studies on their provok-
ing substances in human models have provided valuable 
insights into underlying mechanisms of migraine head-
aches and auras. Further research is warranted to under-
stand the interplay of these different agents in the ictal 
and interictal phase as well as their relative contributions, 
especially in relation to the heterogeneous manifestations 
of migraine.
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