
J Headache Pain (2006) 7:377–388
DOI 10.1007/s10194-006-0343-x

Electrophysiological response patterns of
primary sensory cortices in migraine

R E V I E W
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Jean Schoenen

Abstract Migraine is an ictal dis-
order characterised by a particular
vulnerability of patients to sensory
overload, both during and outside
of the attack. Central nervous sys-
tem dysfunctions are supposed to
play a pivotal role in migraine.
Electroneurophysiological meth-
ods, which aim to investigate sen-
sory processing, seem thus particu-
larly appropriate to study the
pathophysiology of migraine. We
have thus reviewed evoked poten-
tial studies performed in migraine
patients. Although results are in
part contradictory, these studies

nonetheless demonstrate an interic-
tal dysfunction of sensory cortices,
and possibly of subcortical struc-
tures, in migraine with and without
aura. The predominant abnormality
is a deficient habituation of evoked
responses to repeated stimuli,
probably due to cortical, and possi-
bly widespread neural, “dysex-
citability”.
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Introduction

Migraine is a very common ictal neurological disorder;
nonetheless its pathophysiology is still far from being
completely understood. Both neuronal and vascular com-
ponents are supposed to play a relevant role in migraine,
but its clinical expression is also influenced by environ-
mental factors. Migraine patients seem to be very vulner-
able to any kind of sensory overload. Light exposure is not
only able to worsen a migraine attack, but also to trigger
it [1], and migraine patients commonly report a lower dis-
comfort threshold to light exposure than healthy subjects
[2]. Besides photophobia, an abnormal sensitivity to loud
auditory stimuli seems to be a migraine marker, both dur-
ing attacks and interictally [3, 4]. Osmophobia and taste
abnormalities have been described as very specific of

migraine attacks [5], and osmophobia is also considered
as a reliable marker for migraine [6]. Thus, every modali-
ty of sensory stimulation may induce in migraine patients
a higher discomfort than in non-migraine subjects.

Several neuronal structures are probably involved in
migraine pathophysiology, such as the cerebral cortex, the
brainstem (periaqueductal grey matter, aminergic nuclei),
and both peripheral and central components of the trigemi-
novascular system. However, the global hypersensitivity of
migraine patients to external sensorial stimulation leads
many authors to investigate particularly the responsiveness
of their primary sensory cortices. The methods of clinical
neurophysiology seem particularly appropriate for this; the
evoked responses, more than other methods such as tran-
scranial magnetic stimulation (TMS), provide a peripheral-
central approach, very similar to what happens in physio-
logical conditions. During the last decade almost every
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modality of stimulation has been used to study evoked
responses in migraine. Various interictal and ictal abnor-
malities have been reported in migraine, although as yet
there are no findings that can be used as a diagnostic tool
[7]. We will review the available published data, discuss
their findings and examine the possible neurobiological
bases of the reported abnormalities.

Visual cortex response patterns in migraine

Visual evoked responses may be elicited by many stimu-
lation modalities. In early studies it was preferred to use
single flashes to evoke visual potentials (flash-evoked
visual potentials). In almost all these pilot studies, the
main evoked potential (EP) components showed higher
amplitudes in migraineurs than in controls [8–10] except
one [11]. Early visual evoked potential (VEP) components
were reduced on the side opposite to the aura [12].

However, the visual stimulation modality used most
often to investigate VEP in migraine has certainly been

the reversal lighted checkerboard, normally used to obtain
pattern reversal VEP (PR-VEP). The results of these stud-
ies in migraine were heterogeneous (Table 1). In most
studies normal amplitudes were found [10, 13–22], but
several investigators reported increased amplitudes
between attacks [23–30] or in temporal proximity to an
attack [31], whereas some other authors described
decreased amplitudes [32, 33]. PR-VEP latencies were
found to be increased in some studies [18, 23, 24, 31,
34–37] and decreased in others [25, 38].

VEP amplitude or latency asymmetries were found in
subgroups of patients, occasionally with a relation to the
side of the headache [28, 33, 38–41]. In migraine with
aura patients, vector analysis of VEP showed alterations
suggesting asymmetrical visual cortex activation [42].

In one study the PR-VEP amplitude seemed to
decrease in correlation with the duration of migraine [30],
but this finding was not confirmed [43].

Oelkers et al. [44] found increased N2 latency only
with high spatial frequency of the stimulation pattern and
suggested that this reflects dysfunction of the magnocel-
lular pathway in migraine. High contrast and spatial fre-

Table 1 Pattern reversal visual evoked potentials

Authors Diagnosis Age groups Components measured Principal findings

Kennard et al., 1978 [23] MA Adults N1, P1, N2 Increased amplitude and latency of P1 
compared to controls

Benna et al., 1985 [39] MO Adults N80, P100 Aspecific latency and amplitude asymmetries
Brinciotti et al., 1986 [10] MO, MA Children P2 No differences compared to HV
Polich et al., 1986 [32] MA Adults N75, P100, N145 Reduced P100 amplitude
Mariani et al., 1988 [13] MO Adults P100 No differences compared to controls
Raudino, 1988 [31] MO, MA Adults P100 Increased P100 latency and amplitude close 

to the attack
Diener et al., 1989 [34] MO, MA Adults P100 Increased latency and amplitude
Lai et al., 1989 [14] MO, MA Adults N1, P1 Latencies and amplitudes within normal limits
Drake et al., 1990 [15] MO Adults N1, P1, N2 No differences compared to HV
Mariani et al., 1990 [24] MA Adults N75, P100 Increased latencies of P100
Tsounis et al., 1993 [38] MO, MA Adults P100 P100 latencies shorter on the symptomatic 

side (hemifield stimulation)
Tagliati et al., 1995 [33] MO, MA Adults N70, P100 No difference compared to HV. 

Reduced amplitudes ipsilateral to visual aura
Schoenen et al., 1995 [16] MO, MA Adults N1, P1, N2 No differences compared to HV
Rossi et al., 1996 [17] MO, MA, Children P100 No differences in latencies 

ETTH compared to HV
Lahat et al., 1997 [26] MO Children P1, N2 Increased amplitude
Shibata et al., 1997 [27] MO, MA Adults N75, P100, N145 Increased P100amplitude in MA

compared to HV
Sener et al., 1997 [18] MO, MA Adults N70, P100 No differences compared to controls
Shibata et al., 1997 [28] MO, MA Adults N75, P100 Increased P100 amplitude in MA, higher on 

the contralateral side of visual aura
Aloisi et al., 1997 [25] MO, MA Children P100, N140 Shorter P100 latency and increased P100 

amplitude (lowered by administration 
of magnesium)

Cont. →
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quency of the visual stimulation pattern seems also to
induce increased amplitudes of VEP components [45].

These results were globally similar in migraine with
and without aura [10, 14, 17, 18, 22, 25, 30, 31, 34], with
the exception of abnormalities of the P100 amplitude,
which were found on the side of the visual aura in
migraineurs with aura [28, 33].

The discrepancies that emerged from these studies can
in part be explained by methodological differences.
Diagnostic groups tend to be less homogeneous in studies
performed before the first Headache Classification of the
International Headache Society (1988) [46] became avail-
able. More importantly, evoked cortical responses under-
go profound modifications in the peri-ictal, ictal and
immediate post-ictal periods, which was not always suffi-
ciently controlled in all studies.

Taken together, classical studies of averaged PR-VEP
do not provide any consistent clue for the CNS patho-
physiology of migraine. By contrast, a considerable

advance towards the comprehension of the patterns of cor-
tical function in migraine patients was obtained when,
instead of considering the PR-VEPs amplitudes per se,
they were investigated with regards to their modifications
following repeated stimulations.

Normally, when an innocuous/irrelevant stimulus is
delivered repetitively a gradual decrease in the strength of
the cortical responses is observed. This phenomenon is
known as “habituation”. It plays an important role for
adaptation because it protects against sensory overload
and saves attentional and memory resources for meaning-
ful novel stimuli. When applied to the electrophysiologi-
cal data obtained in migraine patients, the analyses of the
habituation of evoked potentials are more concordant. The
first detailed studies of habituation performed on VEP
showed that amplitudes of the N1-P1 and P1-N2 compo-
nents decreased (i.e., habituated) during repetitive stimu-
lation in healthy volunteers, while they remained
unchanged or increased (i.e., potentiated) in migraineurs

Table 1 cont.

Authors Diagnosis Age groups Components measured Principal findings

Afra et al., 1998 [19] MO, MA Adults N1, P1, N2 No differences in first block latencies 
and amplitude

Shibata et al., 1998 [40] MA, ME Adults N/5, P100 Increased amplitude soon after attack. 
(aura, Amplitude asymmetry correlated 
no headache) to the disease duration

Oelkers et al., 1999 [44] MO, MA Adults N1, P1, N2 Prolonged latency of N2 in MA during high 
spatial frequency stimulation

Wang et al., 1999 [20] MO, ETTH, Adults N1, P1, N2 No differences in first block 
CTTH latency or amplitude

Lahat et al., 1999 [29] MO Children N1, P1, N2 Increased amplitude of P1/N2
Afra et al., 2000 [48] MA Adults N1, P1, N2 No increased VEP amplitude with red light 

(but increase in HV)
Afra et al., 2000 [73] MO, MA Adults N1, P1, N2 No significant first block amplitude 

differences compared to HV
Yucesan et al., 2000 [43] MO Adults N70, P100 No correlation between amplitudes of VEPs 

and duration of the disease
Khalil et al., 2000 [30] MO+MA Adults P1 Increased amplitude of P1 (decreased 

in patients with long disease duration)
Sand and Vingen, 2000 [22] MO, MA Adults N1, P1, N2 No differences in VEP amplitudes
Logi et al., 2001 [41] MO, MA Adults N70, P100 Asymmetric topographic VEP distribution 

in migraineurs
Cautin-Churchman and MA Adults P1, N2 Altered vector deviation after pattern-reversal
Padron de Freytez, 2003 [42] and LED goggles stimulation according to the

laterality of symptoms
Shibata et al., 2005 [45] MO, MA Adults N75, P100, P135 Increased VEP amplitudes with high contrasts 

and high spatial frequency stimulation
Coppola et al., 2005 [56] MO, MA Adults Early and late GFOs Increased amplitude of early GFOs

HV, healthy volunteers; MO, migraine without aura; MA, migraine with aura; ME, aura without headache; ETTH, episodic tension-type
headache; CTTH, chronic tension-type headache
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between attacks [16, 19, 20]. By contrast, in migraine
patients PR-VEP amplitude normalises just before and
during the attack [47].

The interictal lack of habituation in migraine was not
confirmed as such in two studies. In the first one [44],
only a trend for an N1-P1 habituation deficit was found in
migraine with aura when a low spatial frequency was used
for stimulation, but technical differences (e.g., a higher
contrast pattern) may explain the incongruence. In the
second study [22], the majority of patients were recorded
in the pre-ictal phase and while habituation was signifi-
cant in healthy volunteers, it was not so in patients
between attacks.

VEP potentiation was negatively correlated with
amplitude in the first block of averaged responses [21],
and red light, supposed to represent the most effective
stimulus for the visual cortex, induced VEP potentiation
in healthy subjects, but not in migraineurs [48]. These
results may indicate that the visual cortex is less respon-
sive in migraine. Interestingly, the reduced VEP habitua-
tion pattern is correlated, in migraine patients, with a
reduced habituation to the nociceptive blink reflex, sug-
gesting that both visual cortex and brainstem share similar
neurobiological dysfunctions in migraine [49].

The degree of the VEP habituation deficit was very
similar in related parent-child pairs of migraineurs, but
not in unrelated pairs [50], which favours its familial,
most probably genetic, character.

VEP studies are also partly contradictory in migrain-
ous children. Some authors reported normal [10, 17], oth-
ers increased amplitudes [25, 26, 29]; this was associated
with decreased latencies in one study [25]. Deficient
habituation to PR-VEP seems to be absent in childhood
migraine [37].

Drug treatments may influence visual evoked respons-
es in migraine patients. PR-VEP [34] and PR-VEP habit-
uation [51] tended to return to values comparable to those
of healthy subjects during prophylactic treatment with
beta-blockers. The reduced PR-VEP habituation found in
migraine patients normalises also during prolonged treat-
ment with the specific serotonin reuptake blocker fluoxe-
tine [52]. MEG signals evoked by visual stimulation are
reduced in migraine patients during prophylactic treat-
ment with sodium valproate [53].

Since it was first described, the altered interictal habit-
uation pattern in migraine patients has been considered by
turns as expression of cortical hyper- or hypoexcitability.
As repetitive TMS (rTMS) at different rates induces mod-
ifications of cortical excitability, in particular high-fre-
quency rTMS over the occipital region activates the
underlying cortex and low frequency rTMS has an
inhibitory effect, the rTMS-induced effects on cortical
excitability were used to investigate VEP habituation in

migraine. The high-frequency rTMS was followed by a
normalisation of VEP habituation in migraineurs, while
the low-frequency rTMS induced a deficit of VEP habitu-
ation in normal controls [54]. After daily sessions of
rTMS, it has been shown that these effects on habituation
may last from hours to weeks both in controls and
migraine patients [55]. These findings suggest that in
migraine patients the reduced VEP habituation is associat-
ed to cortical hypoexcitability.

New methods of VEP analyses, such as the measure
of visual evoked high-frequency oscillations in the
gamma range (gamma frequency oscillations (GFOs),
20–60 Hz) may represent a further tool to investigate
migraine pathophysiology. A recent pilot study, pub-
lished in abstract form [56], showed that the late GFOs,
which are supposed to represent post-synaptic evoked
activity, present a significant habituation deficit in
migraine patients. On the other hand, the early GFOs,
which seem to be related to presynaptic mechanisms,
have increased amplitudes in migraineurs with aura only,
which may account for the visual discomfort more fre-
quently reported by them.

Auditory cortex response patterns in migraine

Studies of short latency, i.e., brainstem auditory evoked
responses (BAERs), provide contrasting results in
migraine (Table 2). There were reported normal interictal
latencies [22, 39, 57–59], increased latencies (especially
for wave V) [60, 61], in particular during the attack [57,
58], and inter-aural asymmetries [60], especially in
migraine with aura [62]. A negative correlation was also
described between discomfort caused by low-intensity
stimulations (55 dB) and wave IV-V amplitude [22].
During the migraine attack, the later BAERs components
have increased latencies [57, 58].

Conversely, concordant results came from the few
studies of cortical long-latency auditory evoked poten-
tials, which did not show significant differences between
migraineurs and controls with regard to N1, P2 and N2
component latency or amplitude [22, 61].

Few studies have explored habituation of cortical audi-
tory evoked potentials. The first study reported potentia-
tion of N1-P2 amplitude only at high stimulus intensities,
contrasting with habituation in healthy volunteers [63].
This was not confirmed in another report [22], possibly
because of methodological differences. In a later study
[64], the intensity dependence of auditory N1-P2 and
habituation for each stimulation intensity were measured
simultaneously. In this study the finding of a greater
potentiation for high- than for low-intensity stimulations
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in migraineurs was confirmed, as opposed to habituation
or absence of amplitude change for all stimulation inten-
sities in controls.

“Gating of sensory input” is another central phenom-
enon, which plays a crucial role in the processing of
incoming information. A typical expression of this phe-
nomenon is the suppression of the cortical response to a
test stimulus delivered after an identical conditioning
stimulus. The middle-latency P50 component of the
auditory evoked cortical potential is very sensitive to
auditory sensory gating and thus a classical electrophys-
iological tool for its assessment. The study of sensory

gating of the auditory P50 response [65] showed a
marked reduction of gating in patients compared to
healthy volunteers, which suggests that lack of habitua-
tion in migraine might result in part from a precortical
dysfunction. A reduced sensory gating of the P50 wave
in migraine patients was confirmed by another study [66]
and considered as an expression of reduced short-term
habituation.

Intensity dependence of auditory evoked potentials
(IDAP) is supposed to be inversely related to central sero-
tonin neurotransmission [67]. Thus the finding of an
increased IDAP in migraine patients was particularly

Table 2 Auditory evoked potentials (AEPs)

Authors Diagnosis Age groups Type of AEP recorded Principal findings

Benna et al., 1985 [39] MO Adults BAERs No abnormalities or asymmetries compared 
to controls

Bussone et al., 1985 [60] MO Adults BAERs Increased and asymmetric I-V latencies 
in migraineurs

Yamada et al., 1986 [57] MA (basilar Adults BAERs IV and V wave latencies prolonged 
migraine) during headache

Podoshin et al., 1987 [58] MO, MA Adults BAERs No interictal differences compared to HV. 
Prolonged interpeak latencies during headache

Battistella et al., 1988 [59] MO, MA Children BAERs No difference compared to HV

Drake et al., 1989 [61] MO Adults Long-latency AEPs No differences in N100, P200 and N200 
amplitudes and latencies with respect to HV

Schlake et al., 1990 [62] MO, MA Adults BAERs Asymmetric I, II, III and V latencies 
in migraineurs (especially in MA)

Drake et al., 1990 [15] MO Adults BAERs Prolonged I-V and III-V interpeak latencies 
in migraineurs compared to HV

Wang et al., 1996 [63] MO, MA Adults Long-latency Interictal increased IDAP in migraine patients
AEPs (IDAP)

Proietti-Cecchini M? Adults Long-latency Increased IDAP after zolmitriptan 10 mg both 
et al., 1997 [68] AEPs (IDAP) in migraine patients and HV

Sandor et al., 1999 [50] MO Adults, Long-latency Correlation of IDAP slopes in migraine pairs 
children AEPs (IDAP) (parent-child)

Sand and Vingen, 2000 [22] MA, MO Adults BAERs, long-latency No difference compared to HV
AEPs (IDAP)

Judit et al., 2000 [47] MO, MA Adults Long-latency Normalisation of IDAP just before 
AEPs (IDAP) and during an attack

Sandor et al., 2000 [51] MO, MA Adults Long-latency Reduction of IDAP in migraine patients 
AEPs (IDAP) during treatment with beta-blockers 

(but not riboflavin)

Afra et al., 2000 [21] MO, MA Adults Long-latency No correlation between IDAP slopes 
AEPs (IDAP) and VEP habituation

Siniatchkin et al., 2000 [70] MO Adults, Long-latency Correlation of IDAP slopes in migraine pairs 
children AEPs (IDAP) (parent-child)

Ambrosini et al., 2003 [64] MO Adults Long-latency AEPs Increased IDAP and deficit of AEP habituation
in migraine

HV, healthy volunteers; MO, migraine without aura; MA, migraine with aura; BAERs, brainstem auditory evoked responses; IDAP, inten-
sity dependence of auditory potentials
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interesting [63], because this further example of abnormal
information processing in interictal migraine has a well
investigated biological background. Further evidence for
IDAP as a surrogate marker for central serotonergic neu-
rotransmission came from a study [68] showing that
dexfenfluramine, a drug increasing serotonergic activity,
decreases IDAP, while zolmitriptan, a 5-HT-1B/D receptor
agonist, which is able to decrease brain serotonin via
presynaptic inhibition of its release, increases IDAP. The
increased IDAP normalises during the migraine attack
[47]. IDAP abnormalities were correlated with personali-
ty profiles thought to be associated with lower serotoner-
gic transmission in migraine, but not in post-traumatic
headache [69].

Two independent studies [50, 70] found evidence for a
familial influence on IDAP in migraineurs, pointing
towards a genetic background, though a direct genetic link
is still to be proven.

In spite of its well established neurochemical basis,
IDAP is not useful for diagnostic purposes because of its
limited repeatability both in pathophysiological [71] and
in pharmacological studies [72]. This may be related to

the fact that most of the IDAP increase in migraine could
be due to the AEP habituation deficit at high-intensity
stimulations [64]. Interestingly, degrees of amplitude-
stimulus function slopes reflecting IDAP and PR-VEPs
lack of habituation were not significantly correlated when
investigated together in migraine patients [73].

Somatosensory cortex response patterns in migraine

Overall, no significant abnormalities of somatosensory
evoked potentials (SEP) after median nerve or index fin-
ger stimulation were found in migraine when a classical
analysis was performed [74–77] (Table 3). In a few stud-
ies on small numbers of subjects, some subtle differences
with controls were reported: prolonged N13 latency inter-
ictally [74], reduced P22/N30 amplitude interictally [78],
prolonged N19 latency and reduced amplitude during the
aura [76].

Habituation of SEP has only been measured in one
study up to now. Ozkul and Uckardes [79] found poten-

Table 3 Somatosensory evoked potentials (SEP)

Authors Diagnosis Age groups Stimulation site Components measured Principal findings

Montagna et al., 1985 [74] M?, TTH Adults Median nerve N13, ? Prolonged latency of N13 
(wrist) in migraineurs with respect 

to TTH patients.

Firenze et al., 1988 [75] MO, TTH, Adults Median nerve N1, P2 No differences compared 
CH (wrist) to HV

Chayasirisobhon, 1995 [76] MA Adults Median nerve N13, N19, P25 Prolonged N19 latencies and 
(wrist) reduced amplitude of N19-P25 

during the aura. Normal 
values during headache.

Marlowe, 1995 [77] M?, TTH Adults Index finger P1, N1, P2 No differences in P1-N1 and 
N1-P2 amplitudes, reduced 
intensity-dependence of P1-N1 
amplitudes

De Tommaso et al., 1997 [78] MO, MA Adults Median nerve N13, N20, P22, P25, Reduced amplitude of 
(wrist) P27, N30 P22/N30 complex in 

migraineurs (asymmetric in 
migraine with aura)

Sakuma et al., 2004 [83] MO, MA Adults Median nerve SEPs, high-frequency Reduced HFOs amplitudes 
(wrist) oscillations (HFOs) – in migraineurs

N9, N13, N20, P25

Valeriani et al., 2005 [80] MO Children Median nerve N13, N20, P24, N30 Higher SEPs recovery cycle in 
(wrist) migraineurs

Coppola et al., 2005 [84] MO, MA Adults Median nerve Early and late SEPs, Reduced amplitude of early 
(wrist) high-frequency HFOs in migraineurs

oscillations (HFOs) – 
N13, N20, P25, N33

HV, healthy volunteers; MO, migraine without aura; MA, migraine with aura; TTH, tension-type headache; CH, cluster headache
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tiation of median nerve SEP N20 component in
migraineurs, contrasting with habituation in healthy
controls.

However, the more interesting news about the
response pattern of sensory cortices in migraine came
mainly from some recent SEP studies, when more sophis-
ticated techniques of recording and analysis were used.
The finding of a shorter SEP recovery cycle in migraine
children than in controls suggested a somatosensory sys-
tem disinhibition [80], possibly due to abnormalities of
inhibitory interneuron function, as suggested by psy-
chophysiological and TMS studies [81, 82]. Investigations
into the high-frequency oscillations (HFOs) embedded in
SEP, which are supposed to reflect spike activity in thala-
mo-cortical cholinergic fibres (early HFOs) and in cortical
inhibitory GABAergic interneurons (late HFOs) were per-
formed in two independent studies. One study [83] con-
sidered HFOs without regarding their latency; they were
found to be reduced in migraine patients with respect to
healthy subjects, and this finding was suggested to be due
to a diminished inhibitory mechanism. The other one [84]
showed a reduced amplitude and area-under-the-rectified-
curve of early HFOs in migraine patients, whereas late
HFOs were similar in migraineurs and controls, suggest-
ing a reduced thalamo-cortical activation but normal intra-
cortical inhibition in migraine.

The migraine response pattern of somatosensory cor-
tex has also been investigated with magneto-encephalog-
raphy [85]. In this study the equivalent current dipole of
the first MEP cortical component, the N20m, was
increased in migraine patients and positively related to
their mean attack frequency, which led the Authors to sug-
gest that the population of neurons in the primary
somatosensory cortex underlying the N20m are hyperex-
citable and that this hyperexcitability is linked to the fre-
quency of migraine attacks. Curiously, in this study there
was no difference of habituation patterns in migraine
patients and controls, because both groups showed no
habituation to repeated stimuli, in contrast with all previ-
ous evoked potential studies in healthy subjects.

Olfactory cortex response patterns in migraine

At present only two studies are available investigating
olfactory cortex responses in migraine patients. The first
one [86] demonstrated smaller olfactory ERP amplitudes
in migraineurs. The second study, published only in
abstract form [87], suggested that the above-described
deficit of habituation, which seems to characterise cortical
response patterns of migraine patients, is present also in
olfactory evoked potentials.

Discussion

The majority of evoked potential studies in migraine have
shown two main abnormalities: increased amplitudes of
grand averagings in the main EP components and lack of
habituation in successive blocks of EP averagings. At first
sight, increased amplitudes of cortical evoked responses
would favour the hypothesis that migraine is characterised
by cortical hyperexcitability between attacks [88].
However, from a strictly semantic point of view, we can
refer to hyperexcitability when a normal stimulus pro-
duces an abnormally increased response. However, this is
not what emerges from evoked potential studies in
migraine patients, when evoked responses are averaged
over a great number of stimulations. By contrast, in the
first blocks of low numbers of averaged trials recorded in
the beginning of the recording sessions, the amplitudes
are generally lower, not higher, in migraineurs than in
healthy volunteers. It is thus likely that the increased EP
amplitudes found in some studies are not due to cortical
hyperexcitability as such, but to the lack of habituation of
the responses during sustained stimulation [16].

Thus, lack of habituation was indeed the most consis-
tent abnormality found in migraineurs, described for every
modality of stimulation (visual, auditory, somatosensory
and olfactory) and responsible both for the increased
amplitudes of EP components and the increased intensity
dependence of evoked potentials (Table 4).

Although habituation of cortical evoked responses is a
complex neurobiological phenomenon, it might crucially
depend on the preactivation excitability level of the sen-
sory cortices. According to the “ceiling theory” [89], a
low preactivation level would allow a wide range of
suprathreshold activation before reaching the “ceiling”
and initiating a “reducing” response, i.e., habituation.
When applied to EP findings in migraineurs this model
would explain both the low first block amplitude for most
EP components and lack of habituation on trial repetition.
The preactivation level of cortical excitability depends on
the so-called “state-setting, chemically addressed connec-
tions” that originate in the brainstem and involve sero-
tonin and noradrenaline as transmitters [67, 90]. Low
interictal activity of these systems, especially of the
raphe-cortical serotonergic pathway, could indeed be
responsible in migraineurs for the observed electrophysi-
ological abnormalities [91].

If this hypothesis were correct, manipulations of the
cortical preactivation level would produce modifications
in the habituation pattern in migraine patients and healthy
volunteers. In fact, high-frequency rTMS over the occipi-
tal region, known to activate the underlying cortex, was
followed by a normalisation of VEP habituation in
migraineurs, while low-frequency rTMS, which has an
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inhibitory effect, induced a deficit of VEP habituation in
normal controls [54]. This finding would suggest that a
lower preactivation level effectively characterises the
migrainous brain, although a “dysexcitability” of intracor-
tical inhibitory interneurons cannot be excluded. As a
matter of fact, low-frequency rTMS was shown to have a
paradoxical effect on the migraine cortex [92], which may
suggest that the effect of TMS depends on the excitability
level of the underlying cortex.

The ictal normalisation of EP amplitudes and habitua-
tion suggests that the cortical preactivation levels increase
in temporal proximity to the migraine attack, which could
be part of a homeostatic process according to the biobe-
havioural theory of migraine [93].

The concordance of EP habituation findings in
migraine contrasts with the results on visual cortex
excitability assessed with magnetophosphenes. The
phosphene threshold (PT) in migraine patients was found
to be lower than in healthy volunteers in some studies, but
similar or higher in others (reviewed in [94]). Some dis-
crepancies could be due to methodological differences
that may be device- and patient-dependent.

Thus, considering decreased thresholds for magne-
tophosphenes in migraine as evidence for increased
excitability of the visual cortex may be premature. The
fact that opposite results were obtained in different labo-
ratories with similar methods suggests that phosphenes
are too subjective and variable to be used to measure

Table 4 Habituation in evoked potentials

Authors Diagnosis Age groups Type of Components Principal findings
recordings measured

Schoenen et al., 1995 [16] MO, MA Adults PR-VEP N1, P1, N2 Potentiation of N1-P1 and P1-N2 
amplitudes in migraineurs; 
habituation in HV

Afra et al., 1998 [19] MO, MA Adults PR-VEP N1, P1, N2 N1-P1 amplitudes: lack of habituation 
in MA, potentiation in MO. 
P1-N2 amplitudes: slight potentiation 
in both groups

Wang et al., 1999 [20] MO, ETTH, Adults PR-VEP N1, P1, N2 Reduced habituation of N1-P1 
CTTH and P1-N2 amplitudes in migraine, 

but not in chronic or episodic 
tension-type headache

Oelkers et al., 1999 [44] MO, MA Adults PR-VEP N1, P1, N2 No difference between groups 
(non-significant N1-P1 and P1-N2 
amplitude potentiation in MA limited 
to the lower spatial frequency)

Sandor et al., 1999 [50] MO Adults, PR-VEP N1, P1 Similar lack of habituation patterns 
children in related migrainous pairs

Afra et al., 2000 [48] MA Adults PR-VEP N1, P1 With red-tinted glasses potentiation 
of N1-P1 in HV. No effect in MA

Afra et al., 2000 [73] MO, MA Adults PR-VEP N1,P1 Negative correlation between 1st block 
amplitude and habituation

Sand and Vingen, 2000 [22] MO, MA Adults PR-VEP N1, P1, N2 Significant habituation to small checks 
in HV, but not in migraineurs (except in 
patients recorded just before an attack)

Ambrosini et al., 2001 [65] MO Adults AEP P50 Reduced P50 gating in migraine patients
Bohotin et al., 2002 [54] MO, MA Adults PR-VEP N1, P1, N2 Normalisation of VEP habituation in 

and rTMS migraineurs after high-frequency rTMS. 
Deficit of VEP habituation in healthy 
subjects after low-frequency rTMS

Ozkul and Bozlar, 2002 [52] MO, MA Adults PR-VEP N1, P1 Normalisation of VEP habituation in 
migraineurs during treatment with 
fluoxetine

Ozkul and Uckardes, MO, MA Adults Median nerve N9, N13, N20 Deficit of habituation of N20 
(2002) [79] SEP (wrist) in migraineurs

Cont. →
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excitability of the visual cortex. This was confirmed in a
recent study by Antal et al. [95], who measured PT in dif-
ferent sessions over a long time period and found that con-
trols showed PT stability over time, whereas there were
great variations of PT values in migraine patients. This
study suggests that more objective and reliable methods to

assess cortical excitability are preferable. On the other
hand, it could account for the contrasting results obtained
with magnetophosphenes in migraine patients, and sug-
gest that the main characteristic of the migrainous brain is
functional instability, i.e., dysexcitability rather than
hyper- or hypoexcitability.

Table 4 cont.

Authors Diagnosis Age groups Type of Components Principal findings
recordings measured

Ambrosini et al., 2003 [64] MO Adults Long-latency N1, P2 – IDAP Increased IDAP and deficit of AEP
AEPs habituation in migraine

Siniatchkin et al., 2003 [66] MO Adults AEP P50 Reduced P50 gating in migraine 
patients

Di Clemente et al., 2005 [49] MO Adults PR-VEP and N1, P1 Positive correlation between VEP
nociceptive habituation and habituation of the 
Blink Reflex nociceptive blink reflex in migraine 

patients
Coppola et al., 2005 [56] MO, MA Adults PR-VEP Early and late GFOs Deficit of habituation of late GFOs
Oelkers-Ax et al., 2005 [37] MO, MA, Children PR-VEP N80, P100, N180 Normal VEP habituation in migraine 

TTH children
Fumal et al., 2006 [55] MO, MA Adults PR-VEP N1, P1 Long-lasting normalisation of VEP

and rTMS habituation in migraineurs after daily 
high-frequency rTMS and long-lasting 
deficit of VEP habituation in controls 
after daily low-frequency rTMS

HV, healthy volunteers; MO, migraine without aura; MA, migraine with aura; TTH, tension-type headache; ETTH, episodic tension-type
headache; CTTH, chronic tension-type headache
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